MATH 1A: CALCULUS
 HOMEWORK \#8

JOHN VOIGHT
§4.2: The Mean Value Theorem
Problem 2. We compute that $f(0)=5=2^{3}-3\left(2^{2}\right)+2(2)+5=f(2)$, so the starting and ending values are the same. The function f is continuous on $[0,2]$ (in fact, on all real numbers) because it is a polynomial. It is differentiable on $(0,2)$ also because it is a polynomial: to check this, we see that

$$
f^{\prime}(x)=3 x^{2}-6 x+2
$$

which has domain all real numbers.
We want to find all values c such that $f^{\prime}(c)=0$:

$$
f^{\prime}(c)=3 c^{3}-6 c+2=0
$$

by the quadratic formula, we get

$$
c=\frac{6 \pm \sqrt{36-24}}{6}=1 \pm \frac{\sqrt{3}}{3}
$$

In terms of Rolle's theorem, for the conclusion we consider only values in the open interval $(0,2)$, and both of these values lie in this interval (since $\sqrt{3} / 3=1 / \sqrt{3}<1$).

Problem 4. We see that

$$
f(-6)=0=f(0)
$$

the function f is continuous on the interval $[-6,0]$ since it is the product of a root function and a polynomial; and that

$$
f^{\prime}(x)=\left(x(x+6)^{1 / 2}\right)^{\prime}=\frac{1}{2} x(x+6)^{-1 / 2}+(x+6)^{1 / 2}=\frac{x}{2 \sqrt{x+6}}+\sqrt{x+6}
$$

which has domain $x>-6$ so f is differentiable on $(-6,0)$. Therefore f satisfies the conditions of Rolle's theorem, and

$$
\begin{aligned}
f^{\prime}(x)=\frac{x+2(x+6)}{2 \sqrt{x+6}} & =0 \\
3 x+12 & =0
\end{aligned}
$$

so $c=-4$, which is indeed in $(-6,0)$.
Problem 6. We compute that $f^{\prime}(x)=-2(x-1)^{-3}=-2 /(x-1)^{3}$, which is never zero. This does not contradict Rolle's theorem because the function f is discontinuous at $x=1$, so Rolle's theorem does not apply to the function f on the interval [0,2].
Problem 8. We see that $f(1)=5$ and $f(7)=2$, so we look for values c such that

$$
f^{\prime}(c)=\frac{f(7)-f(1)}{7-1}=\frac{2-5}{6}=-\frac{1}{2}
$$

Looking at the graph, we see that the slope is about $-1 / 2$ and we have the values

$$
c \approx 1.2,2.8,4.7,5.8
$$

Date: March 16, 2004.
$\S 4.2: 2,4,6,8,10,12,14,16,18,19,21(\mathrm{a}), 24,30,31,32 ; \S 4.3: 2,6,8,12,14,20,22,32,34,38,42$; Updated March 17 , 2004.

Problem 10(a). By plotting points, we have:

From the graph, we estimate that the x coordinates are $-1.1,1.1$.
Problem 10(b). On the interval [-2, 2], we compute

$$
\frac{f(b)-f(a)}{b-a}=\frac{4-(-4)}{2-(-2)}=2
$$

So we want to solve

$$
f^{\prime}(x)=3 x^{2}-2=2
$$

which has the roots $x^{2}=4 / 3$ or $x= \pm 2 / \sqrt{3}= \pm(2 \sqrt{3}) / 3 \approx \pm 1.15$. These compare well with the value estimated in (a).

Problem 12. The function $f(x)=x^{3}+x-1$ is continuous on $[0,2]$ and differentiable on $(0,2)$ because it is a polynomial, therefore it satisfies the hypotheses of the Mean Value Theorem.

We compute that

$$
\frac{f(2)-f(0)}{2-0}=\frac{9+1}{2}=5
$$

and

$$
\begin{aligned}
f^{\prime}(x)=3 x^{2}+1 & =5 \\
x^{2} & =4 / 3 \\
x & = \pm 2 / \sqrt{3}= \pm(2 \sqrt{3}) / 3 .
\end{aligned}
$$

In the interval $(0,2)$, we have only $c=(2 \sqrt{3}) / 3$ satisfying the conditions of the theorem.
Problem 14. The function $f(x)=x /(x+2)$ is continuous on $[1,4]$ because this is a rational function on its domain $(x \neq-2)$. It is differentiable on $(1,4)$ because

$$
f^{\prime}(x)=\frac{(x+2)-x}{(x+2)^{2}}=\frac{2}{(x+2)^{2}}
$$

is also a rational function with domain $x \neq-2$. Therefore it satisfies the conditions of the Mean Value Theorem.

We compute that

$$
\frac{f(4)-f(1)}{4-1}=\frac{2 / 3-1 / 3}{3}=\frac{1}{9}
$$

and

$$
\begin{aligned}
f^{\prime}(x)=\frac{2}{(x+2)^{2}} & =\frac{1}{9} \\
18 & =(x+2)^{2} \\
\pm 3 \sqrt{2} & =x+2 \\
x & =-2 \pm 3 \sqrt{2}
\end{aligned}
$$

In the interval $(1,4)$, we take only $c=-2+3 \sqrt{2} \approx 2.2$ satisfying the conditions of the theorem.
Problem 16. We see that

$$
f(2)-f(0)=3+1=4
$$

and

$$
f^{\prime}(x)=\frac{(x-1)-(x+1)}{(x-1)^{2}}=\frac{-2}{(x-1)^{2}}
$$

so we look for c such that $4=f^{\prime}(c)(2)$ or $f^{\prime}(c)=2$, i.e.

$$
\begin{aligned}
\frac{-2}{(c-1)^{2}} & =2 \\
-1 & =(c-1)^{2}
\end{aligned}
$$

This equation has no solution, since the square of a real number is never negative. Therefore no such c satisfying the Mean Value Theorem exists.

This does not contradict the Mean Value Theorem because the function f is discontinuous at $x=1$, so the Mean Value Theorem does not apply to the function f on the interval [0, 2].
Problem 18. First, we show that $2 x-1-\sin x=0$ has at least one real root. Let $f(x)=2 x-1-\sin x$. Then $f(0)=-1$ and $f(\pi)=2 \pi-1>0$. The function f is continuous on the interval [$0, \pi$] (in fact, all real numbers) because it is the difference of a polynomial and a trigonometric function. Therefore by the Intermediate Value Theorem, it has a root.

Suppose the equation has two real roots. The function f is continuous and differentiable for all real numbers (since $f^{\prime}(x)=2-\cos x$ arises from a trigonometric function). Therefore if $f(a)=f(b)=0, f$ satisfies the conditions of Rolle's theorem on the interval [$a, b]$; but

$$
f^{\prime}(x)=2-\cos x=0
$$

has no solution, since $\cos x \leq 1$. This is a contradiction, so f has at most one real root. Hence f has exactly one real root.

Problem 19. Suppose that f has more than one real root in the interval $[-2,2]$. The function f is continuous and differentiable on this interval (it is a polynomial), so by Rolle's theorem, $f^{\prime}(x)=0$ somewhere in this interval. But

$$
f^{\prime}(x)=3 x^{2}-15=3\left(x^{2}-5\right)=0
$$

has only the roots $x= \pm \sqrt{5} \approx 2.23$, which do not lie in the interval $(-2,2)$. This is a contradiction, so f has at most one real root.

Problem 21(a). Suppose that the cubic polynomial f has at least 4 roots. A polynomial is continuous and differentiable for all real numbers, therefore by Rolle's theorem, the derivative $f^{\prime}(x)$ must take on the value 0 at least 3 times, in each of the three consecutive intervals with endpoints among the 4 roots. But since f has degree 3 , we know that f^{\prime} has degree 2 , which by the quadratic formula can have at most 2 roots. This is a contradiction, therefore f has at most 3 real roots.

Problem 24. If we can apply the Mean Value Theorem (which we must be able to, see Example 5), we will conclude that there exists a c in (a, b) such that

$$
f^{\prime}(c)(b-a)=f(b)-f(a)
$$

This looks like the inequality

$$
18 \leq f(8)-f(2) \leq 30
$$

if we take $b=8$ and $a=2$.
Therefore, let $a=2$ and $b=8$, i.e. look at f on the interval $[2,8]$. By the Mean Value Theorem, there is a c in $(2,8)$ such that

$$
6 f^{\prime}(c)=f(8)-f(2)
$$

But now we are given that

$$
3 \leq f^{\prime}(c) \leq 5
$$

which multiplying by 6 gives

$$
18 \leq 6 f^{\prime}(c) \leq 30
$$

which by the previous equality is just

$$
18 \leq f(8)-f(2) \leq 30
$$

as desired.
Problem 30. Let $g(x)=c x$. Then $g^{\prime}(x)=c$, so $f^{\prime}(x)=g^{\prime}(x)$ for all real numbers. Therefore by Corollary $7, f-g$ is a constant, which we call d. That is,

$$
f(x)=g(x)+d=c x+d
$$

Problem 31. We see indeed that $f^{\prime}(x)=-1 / x^{2}$ and that in both cases $x>0$ and $x<0, g^{\prime}(x)=-1 / x^{2}$.
We can conclude from Corollary 7 that $f-g$ is constant on the interval $(0, \infty)$, and separately that $f-g$ is also constant on the interval $(-\infty, 0)$, but these constants may very well be different, since neither f nor g is defined for $x=0$.
Problem 32. Let

$$
f(x)=2 \sin ^{-1} x
$$

and

$$
g(x)=\cos ^{-1}\left(1-2 x^{2}\right)
$$

for $x \geq 0$. By trig formulas, we have

$$
f^{\prime}(x)=\frac{2}{\sqrt{1-x^{2}}}
$$

By the chain rule, with $u=1-2 x^{2}$ we compute that

$$
\begin{aligned}
g^{\prime}(x) & =-\frac{1}{\sqrt{1-u^{2}}} u^{\prime}=-\frac{1}{\sqrt{1-\left(1-2 x^{2}\right)^{2}}}(-4 x)=\frac{4 x}{\sqrt{1-\left(1-4 x^{2}+4 x^{4}\right)}} \\
& =\frac{4 x}{\sqrt{4 x^{2}-4 x^{4}}}=\frac{4 x}{\sqrt{4 x^{2}\left(1-x^{2}\right)}}=\frac{4 x}{2 x \sqrt{1-x^{2}}}=\frac{2}{\sqrt{1-x^{2}}} .
\end{aligned}
$$

Since $f^{\prime}(x)=g^{\prime}(x)$, i.e. $f^{\prime}(x)-g^{\prime}(x)=0$, by Corollary 7, we see that $f(x)-g(x)$ is constant, or $f(x)=g(x)+c$. Now

$$
f(0)=2 \sin ^{-1}(0)=0
$$

and

$$
g(0)=\cos ^{-1}(1)=0=0
$$

so in fact $c=0$, i.e.

$$
2 \sin ^{-1} x=\cos ^{-1}\left(1-2 x^{2}\right)
$$

§4.3: How Derivatives affect the shape of a graph

Problem 2(a). f is increasing on $(1,3.9)$ and $(5,6.5)$, approximately. (Note they ask for open intervals!)
Problem 2(b). f is decreasing on $(0,1),(3.9,5),(6.5,9)$, approximately.
Problem 2(c). f is concave upward on $(0,3)$ and $(8,9)$.
Problem 2(d). f is concave downward on (3, 8).
Problem 2(e). f has only the inflection point $x=3$. At $x=5$, it stays from concave down to concave down; at $x=8$, it is not continuous.
Problem 6(a). f is increasing if $f^{\prime}>0$ (including appropriate endpoints); therefore f is increasing on $[0,1]$ and $[3,5]$.
f is decreasing if $f^{\prime}<0$ (including appropriate endpoints); therefore f is decreasing on $[1,3]$ and $[5,6]$.
Problem 6(b). f has a local maximum or minimum only if $f^{\prime}(x)=0$, i.e. $x=1,3,5$. At $x=1$ and $x=5$, f^{\prime} goes from + to - so it is a local maximum; at $x=3$ it goes from - to + so it is a local minimum.

Problem 8(a). f is increasing if $f^{\prime}>0$, including appropriate endpoints; therefore f is increasing on [2,4] and $[6,9]$. (By default, if there is no dot at $x=0$ or $x=9$, we assume it is defined there, i.e. it is a solid dot.)
Problem 8(b). At $x=2$ and $x=6, f^{\prime}$ goes from - to + , so f has a local minimum there; at $x=4, f^{\prime}$ goes from + to - , so f has a local maximum there.
Problem 8(c). f is concave upward if $f^{\prime \prime}>0$ and concave downward if $f^{\prime \prime}<0$. Looking at the graph of f^{\prime}, we see that the slope of f^{\prime} is positive on $(1,3),(5,7)$, and $(8,9)$ so the function is concave upward on these intervals, and f^{\prime} has negative slope on $(0,1),(3,5)$, and $(7,8)$, so f is concave downward there.

Problem $8(\mathbf{d})$. The inflection points are where $f^{\prime \prime}(x)=0$ and changes sign; these are the points $x=$ $1,3,5,7,8$.

Problem 12(a). We compute that

$$
f^{\prime}(x)=-6 x+3 x^{2}=3 x(x-2)
$$

Therefore $f^{\prime}(x)>0$ and f is increasing when $3 x>0$ and $x-2>0$, i.e. $x>2$, or when $3 x<0$ and $x-2<0$, i.e. $x<0$. Similarly, $f^{\prime}(x)<0$ and f is decreasing when $3 x>0$ and $x-2<0$, i.e. $0<x<2$, or $3 x<0$ and $x-2>0$, which cannot happen.
f is increasing on the intervals $(-\infty, 0]$ and $[2, \infty)$ and f is decreasing on the interval $[0,2]$.
Problem 12(b). We see that $f^{\prime}(x)=0$ for $x=0,2$. Here,

$$
f^{\prime \prime}(x)=-6+6 x=6 x-6
$$

so $f^{\prime \prime}(0)=-6<0$ and $x=0$ is a local maximum, and $f^{\prime \prime}(2)=6>0$ so $x=2$ is a local minimum.
Problem 12(c). We have $f^{\prime \prime}(x)=6 x-6=0$ for $x=1$. Since from (b) $f^{\prime \prime}(0)<0$ and $f^{\prime \prime}(2)>0$, we see that on the interval $(-\infty, 1), f$ is concave downward, and on the interval $(1, \infty), f$ is concave upward. f has an inflection point at $x=1$.

Problem 14(a). We compute that

$$
f^{\prime}(x)=\frac{\left(x^{2}+3\right)(2 x)-x^{2}(2 x)}{\left(x^{2}+3\right)^{2}}=\frac{6 x}{\left(x^{2}+3\right)^{2}} .
$$

Since $\left(x^{2}+3\right)^{2}>0$ for all x, we see that $f^{\prime}(x)>0$ and f is increasing for $x>0$ and $f^{\prime}(x)<0$ and f is decreasing for $x<0$. Therefore f is decreasing on the interval $(-\infty, 0]$ and is increasing on the interval $[0, \infty)$.

Problem 14(b). Since f changes from decreasing to increasing at $x=0$, we see that it is a local minimum.

Problem 14(c). We compute that

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(x^{2}+3\right)^{2}(6)-(6 x)\left(2\left(x^{2}+3\right)(2 x)\right)}{\left(x^{2}+3\right)^{4}} \\
& =\frac{6\left(x^{2}+3\right)^{2}-24 x^{2}\left(x^{2}+3\right)}{\left(x^{2}+3\right)^{4}} \\
& =\frac{\left(x^{2}+3\right)\left(6\left(x^{2}+3\right)-24 x^{2}\right)}{\left(x^{2}+3\right)^{4}} \\
& =\frac{-18 x^{2}+18}{\left(x^{2}+3\right)^{3}}=\frac{-18\left(x^{2}-1\right)}{\left(x^{2}+3\right)^{3}} .
\end{aligned}
$$

Therefore $f^{\prime \prime}(x)=0$ for $x=-1,1$. We saw that $f^{\prime \prime}(0)>0$, so f is concave upward on that interval. On the interval $(-\infty,-1)$ we see e.g. $f^{\prime \prime}(-2)=-18(3) / 7^{3}<0$ so f is concave downward, and similarly $f^{\prime \prime}(2)>0$ so f is also concave downward there.

In sum, f is concave upward on $(-1,1)$ and f is concave downward on $(-\infty,-1)$ and $(1, \infty) . f$ has inflection points at $x= \pm 1$.

Problem 20(a). The domain of the function, since $\ln x$ is defined only for $x>0$, is $x>0$. We have

$$
f^{\prime}(x)=x(1 / x)+\ln x=1+\ln x
$$

so $f^{\prime}(x)<0$ and f is decreasing for $1+\ln x<0$, i.e. $\ln x<-1$ or $x<e^{-1}=1 / e$, and $f^{\prime}(x)>0$ and f is increasing for $x>1 / e$.

In sum, f is decreasing on $(0,1 / e]$ and is increasing on $[1 / e, \infty)$.
Problem 20(b). Now

$$
f^{\prime \prime}(x)=1 / x
$$

so $f^{\prime \prime}(1 / e)=e>0$, so $x=1 / e$ is a local minimum.
Problem 20(c). Since $f^{\prime \prime}(x)=1 / x$ is never zero, and f is defined only for $x>0$, we conclude that f is always concave upward, and has no inflection point.

Problem 22(a). For $f(x)=x /\left(x^{2}+4\right)$, we have

$$
f^{\prime}(x)=\frac{\left(x^{2}+4\right)-x(2 x)}{\left(x^{2}+4\right)^{2}}=\frac{-x^{2}+4}{\left(x^{2}+4\right)^{2}}
$$

This is zero only when $-x^{2}+4=0$, i.e. $x= \pm 2$.
Since $f^{\prime}(-3)=(-9+4) /(9+4)^{2}<0$ and $f^{\prime}(-1)=(-1+4) /(1+4)^{2}>0$, by the First Derivative Test, $x=-2$ is a local minimum. Since $f^{\prime}(1)=(-1+4) /(1+4)^{2}>0$ and $f^{\prime}(3)=(-9+4) /(9+4)^{2}<0, x=2$ is a local maximum.

For the Second Derivative Test, we compute that

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(x^{2}+4\right)^{2}(-2 x)-\left(-x^{2}+4\right)\left(2\left(x^{2}+4\right)(2 x)\right)}{\left(x^{2}+4\right)^{4}} \\
& =\frac{-2 x\left(x^{2}+4\right)-4 x\left(-x^{2}+4\right)\left(x^{2}+4\right)}{\left(x^{2}+4\right)^{4}}
\end{aligned}
$$

so $f^{\prime \prime}(-2)=(4(8)-0) /(4+4)^{4}>0$, and again $x=-2$ is a local minimum, and $f^{\prime \prime}(2)=(-4(8)-0) /(4+4)^{4}<$ 0 , so $x=2$ is a local maximum.

Problem 32(a). f is increasing when $f^{\prime}>0$, i.e. on $[1,6]$ and $[8,9]$, and decreasing when $f^{\prime}<0$, i.e. on $[0,1]$ and $[6,8]$.

Problem 32(b). x has a local maximum or minimum possibly only when $f^{\prime}=0$, when $x=1,6,8$. We see that $f^{\prime \prime}(1)>0$ (the slope of the graph of f^{\prime} at $x=1$ is positive), so $x=1$ is a local minimum, and similarly $f^{\prime \prime}(6)<0$ so $x=6$ is a local maximum and $f^{\prime \prime}(8)>0$ so $x=8$ is a local minimum.

Problem 32(c). f is concave upward where $f^{\prime \prime}>0$, on the intervals $(0,2),(3,5)$, and $(7,9) . f$ is concave downward where $f^{\prime \prime}<0$, on $(2,3)$ and $(5,7)$.

Problem 32(d). The points of inflection are where $f^{\prime \prime}=0$ and $f^{\prime \prime}$ changes sign. These are the values $x=2,3,5,7$.
Problem 32(e). We use the data from (a)-(d): first, we locate the local maximum at $x=1$ and local minima at $x=6$ and $x=8$; then we note it is concave upward on $[0,2),(3,5)$, and $(7,9]$ and concave downward on $(2,3)$ and $(5,7)$. Since f is increasing on $[1,6]$ and $[8,9]$ and decreasing on $[0,1]$ and $[6,8]$, starting at the origin we can draw the following graph:

Problem 34(a). We have $f^{\prime}(x)=3-3 x^{2}=3\left(1-x^{2}\right)=3(1-x)(1+x)$, so $f^{\prime}>0$ and f is increasing when $1-x>0$ and $1+x>0$, i.e. when $x<1$ and $x>-1$ or on the interval $(-1,1)$, or when $1-x<0$ and $1+x<0$, i.e. $x>1$ and $x<-1$ which cannot happen.

We see then that f is decreasing on $(-\infty,-1]$ and $[1, \infty)$, and increasing on $[-1,1]$.
Problem 34(b). We have $f^{\prime}(x)=0$ for $x=-1,1$. Since $f^{\prime \prime}(x)=-6 x, f^{\prime \prime}(-1)=6$ so $x=-1$ is a local minimum and $f^{\prime \prime}(1)=-6$ so $x=1$ is a local maximum.
Problem 34(c). We have $f^{\prime \prime}(x)=-6 x=0$ for $x=0$, the only inflection point. For $x<0 f^{\prime \prime}(x)>0$ so f is concave upward; for $x>0, f^{\prime \prime}(x)<0$ so f is concave downward.

Problem 34(d). We graph using the data in (a)-(d).

Problem 38(a). We have $h^{\prime}(x)=3\left(x^{2}-1\right)(2 x)=6 x\left(x^{2}-1\right)^{2}$. Since $\left(x^{2}-1\right)^{2}>0$, we see that $h^{\prime}>0$ and h is increasing for $x>0$ and $h^{\prime}<0$ and h is decreasing for $x<0$, i.e. h is increasing on $[0, \infty)$ and decreasing on $(-\infty, 0]$.

Problem 38(b). The solutions to $h^{\prime}(x)=6 x\left(x^{2}-1\right)^{2}=0$ are $x=0,-1,1$. We have

$$
h^{\prime \prime}(x)=6\left(x^{2}-1\right)^{2}+6 x(2)\left(x^{2}-1\right)(2 x)=6\left(x^{2}-1\right)^{2}+24 x^{2}\left(x^{2}-1\right)
$$

and $h^{\prime \prime}(0)=6>0$ so $x=0$ is a local minimum. However, $h^{\prime \prime}(-1)=0$ which is inconclusive. So we test that $h^{\prime}(-1 / 2)=-3(1 / 4-1)^{2}<0$ and $h^{\prime}(-3 / 2)=-9(9 / 4-1)^{2}<0$, so $x=-1$ is neither a local minimum nor a local maximum. Similary, we see that $h^{\prime}(1 / 2)=3(1 / 4-1)>0$ and $h^{\prime}(3 / 2)=9(9 / 4-1)^{2}>0$, so $x=1$ is neither a local minimum nor a local maximum.

Problem 38(c). We factor

$$
h^{\prime \prime}(x)=\left(x^{2}-1\right)\left(6\left(x^{2}-1\right)-24 x^{2}\right)=\left(x^{2}-1\right)\left(30 x^{2}-6\right)=6\left(x^{2}-1\right)\left(5 x^{2}-1\right)=0
$$

This gives the roots $x= \pm 1, \pm 1 / \sqrt{5}$. We test the values

$$
h^{\prime \prime}(-2)=6(4-1)(12+1)>0
$$

and

$$
\left.h^{\prime \prime}(-2 / 3)=6(4 / 9-1)(5(4 / 9)-1)\right)<0
$$

and

$$
h^{\prime \prime}(0)=6(-1)(1)>0
$$

so $x=-1,-1 / \sqrt{5}$ are both inflection points. The same calculation shows that $x=1,1 / \sqrt{5}$ are also inflection points.

The function is concave upward on $(-\infty,-1),(-1 / \sqrt{5}, 1 / \sqrt{5})$ and $(1, \infty)$ and is concave downward on $(-1,-1 / \sqrt{5})$ and $(1 / \sqrt{5}, 1)$. The inflection points are at $x= \pm 1, \pm 1 / \sqrt{5}$.

Problem 38(d). Using the data from (a)-(c), we have the following graph:

Problem 42(a). We have

$$
f^{\prime}(x)=\frac{4 x^{3}}{x^{4}+27}
$$

so since $x^{4}+27>0$ always, we have $f^{\prime}>0$ and f is increasing for $x>0$ and $f^{\prime}<0$ and f is decreasing for $x<0$.

Problem 42(b). We have $f^{\prime}(x)=0$ only for $x=0$. We see $f^{\prime}(-1)=-4 / 28<0$ and $f^{\prime}(1)=4 / 28>0$ so $x=0$ is a local minimum.

Problem 42(c). We compute

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(x^{4}+27\right)\left(12 x^{2}\right)-\left(4 x^{3}\right)\left(4 x^{3}\right)}{\left(x^{4}+27\right)^{2}} \\
& =\frac{-4 x^{6}+324 x^{2}}{\left(x^{4}+27\right)^{2}}
\end{aligned}
$$

This has

$$
\begin{aligned}
f^{\prime \prime}(x) & =-4 x^{6}+324 x^{2}=-4 x^{2}\left(x^{4}-81\right)=-4 x^{2}\left(x^{2}-9\right)\left(x^{2}+9\right) \\
& =-4 x^{2}(x-3)(x+3)\left(x^{2}+9\right)
\end{aligned}
$$

so we must consider the possible values $x=0,3,-3$. We see that

$$
\begin{aligned}
f^{\prime \prime}(-4) & =-4(16)(-7)(-1)(16+9)<0 \\
f^{\prime \prime}(-1) & =-4(1)(-4)(2)(16+9)>0 \\
f^{\prime \prime}(1) & =-4(1)(-2)(4)(1+9)>0 \\
f^{\prime \prime}(4) & =-4(16)(1)(7)(16+9)<0
\end{aligned}
$$

So $x=-3,3$ are inflection points and $x=0$ is not. The function f is concave downward on $(-\infty,-3)$ and $(3, \infty)$ and concave upward on the interval $(-3,3)$.

Problem 42(d). Using (a)-(d), we have:

