# MATH 250B: COMMUTATIVE ALGEBRA HOMEWORK \#7 

JOHN VOIGHT

Problem XVII.12. Prove that an $R$-module $E$ is a generator if and only if it is balanced and finitely generated projective over $\operatorname{End}_{R} E$.

Solution. Lang proves the $(\Rightarrow)$ direction as Theorem 7.1, so it suffices to show that if $E$ is balanced and finitely generated projective over $\operatorname{End}_{R} E$, then $R$ is a homomorphic image of a direct sum of $E$ with itself.

Since $E$ is finitely generated projective over $\operatorname{End}_{R} E$, we have an isomorphism $\left(\operatorname{End}_{R} E\right)^{n} \cong E \oplus F$ for some $\operatorname{End}_{R} E$-module $F$. Therefore we have the following isomorphisms of $\operatorname{End}_{R} E$-modules:

$$
\begin{aligned}
E^{n} & \cong \operatorname{Hom}_{\operatorname{End}_{R} E}\left(\left(\operatorname{End}_{R} E\right)^{n}, E\right) \cong \operatorname{Hom}_{E n d_{R}} E(E \oplus F, E) \\
& \cong \operatorname{Hom}_{\operatorname{End}_{R} E}(F, E) \oplus \operatorname{End}_{E^{2}} E(E)
\end{aligned}
$$

If we define the operation of $\operatorname{End}_{R} E$ to be composition of mappings on the left, these become isomorphisms over $R$. Since $E$ is balanced, $\operatorname{End}_{\operatorname{End}_{R} E}(E) \cong R$, so $E$ is a generator.

Problem X.9(a). Let $A$ be an artinian commutative ring. Prove all prime ideals are maximal. [Hint: Given a prime ideal $\mathfrak{p}$, let $x \in A, x \notin \mathfrak{p}$. Consider the descending chain $(x) \supset\left(x^{2}\right) \supset \ldots$.

Solution. We show that any artinian domain is a field. Let $\mathfrak{p}$ be a prime ideal, so that $A / \mathfrak{p}$ is a domain. Any quotient ring of an artinian ring is artinian (Proposition $7.1)$, so $A / \mathfrak{p}$ is artinian. Let $x \in A / \mathfrak{p}$ be nonzero. Then the descending chain $(x) \supset\left(x^{2}\right) \supset \ldots$ must terminate, so $\left(x^{k}\right)=\left(x^{k+1}\right)$ for some integer $k$; therefore there exists a $y \in A / \mathfrak{p}$ such that $x^{k+1} y=x^{k}$, which is to say $x^{k}(1-x y)=0$, so $x y=1$, and $x \in(A / \mathfrak{p})^{*}$. Therefore $A / \mathfrak{p}$ is a field, so $\mathfrak{p}$ is maximal.

Problem X.9(b). There is only a finite number of prime, or maximal, ideals. [Hint: Among all finite intersections of maximal ideals, pick a minimal one.]

Solution. Let $S$ be the set of finite intersections of maximal ideals in $A$. This set is nonempty, so by Exercise XVII.2(c), there exists a minimal such intersection $\mathfrak{m}_{1} \cap \cdots \cap \mathfrak{m}_{r}$. If $\mathfrak{m}$ is any maximal ideal of $A$, then, $\mathfrak{m} \cap \bigcap_{i} \mathfrak{m}_{i}=\bigcap_{i} \mathfrak{m}_{i}$ so $\mathfrak{m} \supset$ $\bigcap_{i} \mathfrak{m}_{i} \supset \mathfrak{m}_{1} \mathfrak{m}_{2} \ldots \mathfrak{m}_{r}$. A maximal ideal is prime, so $\mathfrak{m} \supset \mathfrak{m}_{i}$ for some $i$, but since $\mathfrak{m}_{i}$ is maximal so $\mathfrak{m}=\mathfrak{m}_{i}$

[^0]Problem X.9(c). The ideal $N$ of nilpotent elements in $A$ is nilpotent, that is there exists a positive integer $k$ such that $N^{k}=(0)$. [Hint: Let $k$ be such that $N^{k}=N^{k+1}$. Let $\mathfrak{a}=N^{k}$. Let $\mathfrak{b}$ be a minimal ideal such that $\mathfrak{b a} \neq 0$. Then $\mathfrak{b}$ is principal and $\mathfrak{b a}=\mathfrak{b}$.]
Solution. Let $k$ be such that $N^{k}=N^{k+1}$. Suppose that $N^{k} \neq 0$; let $S$ be the set of ideals $\mathfrak{b}$ of $A$ such that $\mathfrak{b} N^{k} \neq 0$. The set $S$ is nonempty because $N^{k} \in S$, as $N^{k} N^{k}=N^{2 k}=N^{k} \neq 0$. Since $A$ is artinian, $S$ has a minimal element $\mathfrak{b}$. There is an element $b \in \mathfrak{b}$ such that $b N^{k} \neq 0$; therefore $(b) \in S$ and $(b) \subset \mathfrak{b}$ so by minimality $(b)=\mathfrak{b}$, in particular, $\mathfrak{b}$ is finitely generated. But $\mathfrak{b} N^{k} \subset \mathfrak{b}$ and $\left(\mathfrak{b} N^{k}\right) N^{k}=\mathfrak{b} N^{2 k}=\mathfrak{b} N^{k}$, so again by minimality, $\mathfrak{b} N^{k}=\mathfrak{b}$. But every element of $N^{k}$ is nilpotent hence contained in every maximal ideal, so by Nakayama's lemma, $\mathfrak{b}=0$, a contradiction.

Problem X.9(d). A is noetherian.
Solution. Let $k$ be an integer such that $N^{k}=0$ as in part (c). Then $\bigcap_{\mathfrak{p}} \mathfrak{p}=\sqrt{0}=N$, but by part (a) this implies $N=\bigcap_{i} \mathfrak{m}_{i}$. Let $k$ be an integer such that $N^{k}=0$. Then

$$
N^{k}=0=\left(\bigcap_{i} \mathfrak{m}_{i}\right)^{k} \supset\left(\mathfrak{m}_{1} \ldots \mathfrak{m}_{r}\right)^{k}=\mathfrak{m}_{1}^{k} \ldots \mathfrak{m}_{r}^{k}
$$

Consider $A$ as a module over itself; $A$ is noetherian as an $A$-module if and only if $A$ is noetherian as a ring. We have a filtration

$$
A \supset \mathfrak{m}_{1} \supset \mathfrak{m}_{1}^{2} \supset \cdots \supset \mathfrak{m}_{1}^{k} \ldots \mathfrak{m}_{r}^{k}=0
$$

of $A$. At the step $E \supset E \mathfrak{m}_{i}$ in the filtration, $E / E \mathfrak{m}_{i}$ is a vector space over the field $A / \mathfrak{m}_{i}$ which is finite-dimensional as $A$ is artinian (as in Exercise XVII.2(a)). Therefore $A$ has a finite simple filtration, so by Proposition $7.2, A$ is noetherian as well as artinian.

Problem X.9(e). There exists an integer $r$ such that

$$
A \cong \prod_{\mathfrak{m}} A / \mathfrak{m}^{r}
$$

where the product is taken over all maximal ideals.
Solution. Let $r$ be such that $N^{r}=0$, and let $\mathfrak{m}_{i}$ be the maximal ideals of $A$. Since $\mathfrak{m}_{i}+\mathfrak{m}_{j}=A$ for $i \neq j$, we also have $\mathfrak{m}_{i}^{r}+\mathfrak{m}_{j}^{r}=A$ for $i \neq j$ (otherwise, $\mathfrak{m}_{i}^{r}+\mathfrak{m}_{j}^{r} \subset \mathfrak{m}$ for some maximal ideal $\mathfrak{m}$; then $\mathfrak{m}_{i}^{r} \subset \mathfrak{m}$ so $\mathfrak{m}_{i} \subset \mathfrak{m}$, and similarly $\mathfrak{m}_{j} \subset \mathfrak{m}$, a contradiction). By the Chinese remainder theorem, then,

$$
A \rightarrow \prod_{\mathfrak{m}} A / \mathfrak{m}_{i}^{r}
$$

is surjective. It is also injective, since $\bigcap_{i} \mathfrak{m}_{i}^{r}=N^{r}=0$ (as in part (d)), therefore it is an isomorphism.

Problem X.9(f). We have

$$
A \cong \prod_{\mathfrak{p}} A_{\mathfrak{p}}
$$

where again the product is taken over all prime ideals $\mathfrak{p}$.

Solution. It is enough to show that this map is an isomorphism considered as a map of $A$-modules. Let $\mathfrak{p}_{i}$ be the primes (maximal ideals) of $A$. Since localization preserves exact sequences (it is flat), it is enough to show that the map $A \rightarrow$ $\prod_{i} A_{\mathfrak{p}_{i}}$ is an isomorphism after localization at every prime ideal $\mathfrak{p}$ of $A$. But in this circumstance we have the map

$$
A_{\mathfrak{p}} \rightarrow \prod_{i}\left(A_{\mathfrak{p}_{i}}\right)_{\mathfrak{p}}=\prod_{i}\left(A_{\mathfrak{p}}\right)_{\mathfrak{p}_{i}} .
$$

Now $A_{\mathfrak{p}}$ is artinian (descending chains of ideals of $A_{\mathfrak{p}}$ are descending chains of ideals of $A$ contained in $\mathfrak{p}$ ) and a local ring with maximal ideal $\mathfrak{p} A_{\mathfrak{p}}$, so $N=\mathfrak{p} A_{\mathfrak{p}}$ and $\left(\mathfrak{p} A_{\mathfrak{p}}\right)^{r}=0$. Then for $\mathfrak{p} \neq \mathfrak{p}_{i}$, if $x_{i} \in \mathfrak{p} \backslash \mathfrak{p}_{i}, x_{i}^{r}=0$, so $\left(A_{\mathfrak{p}}\right)_{\mathfrak{p}_{i}}=0$ and the map is an isomorphism.

Problem X.10. Let $A, B$ be local rings with maximal ideals $\mathfrak{m}_{A}, \mathfrak{m}_{B}$, respectively. Let $f: A \rightarrow B$ be a homomorphism. Suppose that $f$ is local, i.e. $f^{-1}\left(\mathfrak{m}_{B}\right)=\mathfrak{m}_{A}$. Assume that $A, B$ are noetherian, and assume that:
(1) $A / \mathfrak{m}_{A} \rightarrow B / \mathfrak{m}_{B}$ is an isomorphism;
(2) $\mathfrak{m}_{A} \rightarrow \mathfrak{m}_{B} / \mathfrak{m}_{B}^{2}$ is surjective;
(3) $B$ is a finite $A$-module, via $f$.

Prove that $f$ is surjective.
Solution. First, $\mathfrak{m}_{B}$ is a finitely generated $B$-module (since $B$ is noetherian) and $f\left(\mathfrak{m}_{A}\right)$ is a finitely generated $B$-submodule of $\mathfrak{m}_{B}$ with $\mathfrak{m}_{B}=f\left(\mathfrak{m}_{A}\right)+\mathfrak{m}_{B}^{2}$ by (2). By Nakayama's lemma (X.4.2), $f\left(\mathfrak{m}_{A}\right)=\mathfrak{m}_{B}$.

Second, since $B$ is finite over $A$ and $f(A)$ is a $B$-submodule with $B=f(A)+\mathfrak{m}_{B} B$ by (1), since $A \rightarrow B / \mathfrak{m}_{B}$ is surjective. But $\mathfrak{m}_{B} B=\mathfrak{m}_{A} B$ treating $B$ as an $A$-module by $f$, so by Nakayama's lemma, $f(A)=B$, so $f$ is surjective.

Problem X.11. Let $A$ be a commutative ring and $M$ an $A$-module. Define the support of $M$ by

$$
\operatorname{Supp}(M)=\left\{\mathfrak{p} \in \operatorname{Spec} A: M_{\mathfrak{p}} \neq 0\right\}
$$

If $M$ is finite over $A$, show that $\operatorname{Supp} M=V(\operatorname{Ann}(M))$, where $V(\mathfrak{a})=\{\mathfrak{p} \in$ $\operatorname{Spec} A: \mathfrak{p} \supset \mathfrak{a}\}$ and $\operatorname{Ann}(M)=\{a \in A: a M=0\}$.
Solution. Let $\mathfrak{p} \in \operatorname{Spec} A$ be so that $M_{\mathfrak{p}} \neq 0$. If $a M=0$ then $a M_{\mathfrak{p}}=0$ so if $a \notin \mathfrak{p}$ then $M_{\mathfrak{p}}=0$; hence $\operatorname{Ann}(M) \subset \mathfrak{p}$.

Conversely, suppose $\operatorname{Ann}(M) \subset \mathfrak{p}$. Let $m_{1}, \ldots, m_{r}$ generate $M$ over $A$. Suppose that $M_{\mathfrak{p}}=0$; then for all $i$ there exists an $a_{i} \notin \mathfrak{p}$ such that $a_{i} m_{i}=0 \in M$. Then $a=\prod_{i} a_{i}$ has $a M=0$; therefore $a \in \mathfrak{p}$, a contradiction.


[^0]:    Date: April 1, 2003.
    XVII: 12 (first sentence); X: 9, 10, 11.

