MATH 250B: COMMUTATIVE ALGEBRA HOMEWORK #7

JOHN VOIGHT

Problem XVII.12. Prove that an *R*-module *E* is a generator if and only if it is balanced and finitely generated projective over $\operatorname{End}_R E$.

Solution. Lang proves the (\Rightarrow) direction as Theorem 7.1, so it suffices to show that if E is balanced and finitely generated projective over $\operatorname{End}_R E$, then R is a homomorphic image of a direct sum of E with itself.

Since E is finitely generated projective over $\operatorname{End}_R E$, we have an isomorphism $(\operatorname{End}_R E)^n \cong E \oplus F$ for some $\operatorname{End}_R E$ -module F. Therefore we have the following isomorphisms of $\operatorname{End}_R E$ -modules:

$$E^{n} \cong \operatorname{Hom}_{\operatorname{End}_{R} E}((\operatorname{End}_{R} E)^{n}, E) \cong \operatorname{Hom}_{\operatorname{End}_{R} E}(E \oplus F, E)$$
$$\cong \operatorname{Hom}_{\operatorname{End}_{R} E}(F, E) \oplus \operatorname{End}_{\operatorname{End}_{R} E}(E).$$

If we define the operation of $\operatorname{End}_R E$ to be composition of mappings on the left, these become isomorphisms over R. Since E is balanced, $\operatorname{End}_{\operatorname{End}_R E}(E) \cong R$, so E is a generator.

Problem X.9(a). Let A be an artinian commutative ring. Prove all prime ideals are maximal. [Hint: Given a prime ideal \mathfrak{p} , let $x \in A$, $x \notin \mathfrak{p}$. Consider the descending chain $(x) \supset (x^2) \supset \ldots$.]

Solution. We show that any artinian domain is a field. Let \mathfrak{p} be a prime ideal, so that A/\mathfrak{p} is a domain. Any quotient ring of an artinian ring is artinian (Proposition 7.1), so A/\mathfrak{p} is artinian. Let $x \in A/\mathfrak{p}$ be nonzero. Then the descending chain $(x) \supset (x^2) \supset \ldots$ must terminate, so $(x^k) = (x^{k+1})$ for some integer k; therefore there exists a $y \in A/\mathfrak{p}$ such that $x^{k+1}y = x^k$, which is to say $x^k(1-xy) = 0$, so xy = 1, and $x \in (A/\mathfrak{p})^*$. Therefore A/\mathfrak{p} is a field, so \mathfrak{p} is maximal.

Problem X.9(b). There is only a finite number of prime, or maximal, ideals. [Hint: Among all finite intersections of maximal ideals, pick a minimal one.]

Solution. Let S be the set of finite intersections of maximal ideals in A. This set is nonempty, so by Exercise XVII.2(c), there exists a minimal such intersection $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_r$. If \mathfrak{m} is any maximal ideal of A, then, $\mathfrak{m} \cap \bigcap_i \mathfrak{m}_i = \bigcap_i \mathfrak{m}_i$ so $\mathfrak{m} \supset \bigcap_i \mathfrak{m}_i \supset \mathfrak{m}_1 \mathfrak{m}_2 \ldots \mathfrak{m}_r$. A maximal ideal is prime, so $\mathfrak{m} \supset \mathfrak{m}_i$ for some *i*, but since \mathfrak{m}_i is maximal so $\mathfrak{m} = \mathfrak{m}_i$.

Date: April 1, 2003.

XVII: 12 (first sentence); X: 9, 10, 11.

JOHN VOIGHT

Problem X.9(c). The ideal N of nilpotent elements in A is nilpotent, that is there exists a positive integer k such that $N^k = (0)$. [Hint: Let k be such that $N^k = N^{k+1}$. Let $\mathfrak{a} = N^k$. Let \mathfrak{b} be a minimal ideal such that $\mathfrak{ba} \neq 0$. Then \mathfrak{b} is principal and $\mathfrak{ba} = \mathfrak{b}$.]

Solution. Let k be such that $N^k = N^{k+1}$. Suppose that $N^k \neq 0$; let S be the set of ideals \mathfrak{b} of A such that $\mathfrak{b}N^k \neq 0$. The set S is nonempty because $N^k \in S$, as $N^k N^k = N^{2k} = N^k \neq 0$. Since A is artinian, S has a minimal element \mathfrak{b} . There is an element $b \in \mathfrak{b}$ such that $bN^k \neq 0$; therefore $(b) \in S$ and $(b) \subset \mathfrak{b}$ so by minimality $(b) = \mathfrak{b}$, in particular, \mathfrak{b} is finitely generated. But $\mathfrak{b}N^k \subset \mathfrak{b}$ and $(\mathfrak{b}N^k)N^k = \mathfrak{b}N^{2k} = \mathfrak{b}N^k$, so again by minimality, $\mathfrak{b}N^k = \mathfrak{b}$. But every element of N^k is nilpotent hence contained in every maximal ideal, so by Nakayama's lemma, $\mathfrak{b} = 0$, a contradiction.

Problem X.9(d). A is noetherian.

Solution. Let k be an integer such that $N^k = 0$ as in part (c). Then $\bigcap_{\mathfrak{p}} \mathfrak{p} = \sqrt{0} = N$, but by part (a) this implies $N = \bigcap_i \mathfrak{m}_i$. Let k be an integer such that $N^k = 0$. Then

$$N^k = 0 = (\bigcap_i \mathfrak{m}_i)^k \supset (\mathfrak{m}_1 \dots \mathfrak{m}_r)^k = \mathfrak{m}_1^k \dots \mathfrak{m}_r^k.$$

Consider A as a module over itself; A is noetherian as an A-module if and only if A is noetherian as a ring. We have a filtration

$$A \supset \mathfrak{m}_1 \supset \mathfrak{m}_1^2 \supset \cdots \supset \mathfrak{m}_1^k \dots \mathfrak{m}_r^k = 0$$

of A. At the step $E \supset E\mathfrak{m}_i$ in the filtration, $E/E\mathfrak{m}_i$ is a vector space over the field A/\mathfrak{m}_i which is finite-dimensional as A is artinian (as in Exercise XVII.2(a)). Therefore A has a finite simple filtration, so by Proposition 7.2, A is noetherian as well as artinian.

Problem X.9(e). There exists an integer r such that

$$A \cong \prod_{\mathfrak{m}} A/\mathfrak{m}^{i}$$

where the product is taken over all maximal ideals.

Solution. Let r be such that $N^r = 0$, and let \mathfrak{m}_i be the maximal ideals of A. Since $\mathfrak{m}_i + \mathfrak{m}_j = A$ for $i \neq j$, we also have $\mathfrak{m}_i^r + \mathfrak{m}_j^r = A$ for $i \neq j$ (otherwise, $\mathfrak{m}_i^r + \mathfrak{m}_j^r \subset \mathfrak{m}$ for some maximal ideal \mathfrak{m} ; then $\mathfrak{m}_i^r \subset \mathfrak{m}$ so $\mathfrak{m}_i \subset \mathfrak{m}$, and similarly $\mathfrak{m}_j \subset \mathfrak{m}$, a contradiction). By the Chinese remainder theorem, then,

$$A \to \prod_{\mathfrak{m}} A/\mathfrak{m}_i^r$$

is surjective. It is also injective, since $\bigcap_i \mathfrak{m}_i^r = N^r = 0$ (as in part (d)), therefore it is an isomorphism.

Problem X.9(f). We have

$$A \cong \prod_{\mathfrak{p}} A_{\mathfrak{p}}$$

where again the product is taken over all prime ideals p.

2

Solution. It is enough to show that this map is an isomorphism considered as a map of A-modules. Let \mathfrak{p}_i be the primes (maximal ideals) of A. Since localization preserves exact sequences (it is flat), it is enough to show that the map $A \rightarrow \prod_i A_{\mathfrak{p}_i}$ is an isomorphism after localization at every prime ideal \mathfrak{p} of A. But in this circumstance we have the map

$$A_{\mathfrak{p}} \to \prod_{i} (A_{\mathfrak{p}_{i}})_{\mathfrak{p}} = \prod_{i} (A_{\mathfrak{p}})_{\mathfrak{p}_{i}}.$$

Now $A_{\mathfrak{p}}$ is artinian (descending chains of ideals of $A_{\mathfrak{p}}$ are descending chains of ideals of A contained in \mathfrak{p}) and a local ring with maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$, so $N = \mathfrak{p}A_{\mathfrak{p}}$ and $(\mathfrak{p}A_{\mathfrak{p}})^r = 0$. Then for $\mathfrak{p} \neq \mathfrak{p}_i$, if $x_i \in \mathfrak{p} \setminus \mathfrak{p}_i$, $x_i^r = 0$, so $(A_{\mathfrak{p}})_{\mathfrak{p}_i} = 0$ and the map is an isomorphism.

Problem X.10. Let A, B be local rings with maximal ideals $\mathfrak{m}_A, \mathfrak{m}_B$, respectively. Let $f : A \to B$ be a homomorphism. Suppose that f is local, i.e. $f^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A$. Assume that A, B are noetherian, and assume that:

- (1) $A/\mathfrak{m}_A \to B/\mathfrak{m}_B$ is an isomorphism;
- (2) $\mathfrak{m}_A \to \mathfrak{m}_B/\mathfrak{m}_B^2$ is surjective;
- (3) B is a finite A-module, via f.

Prove that f is surjective.

Solution. First, \mathfrak{m}_B is a finitely generated *B*-module (since *B* is noetherian) and $f(\mathfrak{m}_A)$ is a finitely generated *B*-submodule of \mathfrak{m}_B with $\mathfrak{m}_B = f(\mathfrak{m}_A) + \mathfrak{m}_B^2$ by (2). By Nakayama's lemma (X.4.2), $f(\mathfrak{m}_A) = \mathfrak{m}_B$.

Second, since B is finite over A and f(A) is a B-submodule with $B = f(A) + \mathfrak{m}_B B$ by (1), since $A \to B/\mathfrak{m}_B$ is surjective. But $\mathfrak{m}_B B = \mathfrak{m}_A B$ treating B as an A-module by f, so by Nakayama's lemma, f(A) = B, so f is surjective.

Problem X.11. Let A be a commutative ring and M an A-module. Define the support of M by

$$\operatorname{Supp}(M) = \{ \mathfrak{p} \in \operatorname{Spec} A : M_{\mathfrak{p}} \neq 0 \}.$$

If M is finite over A, show that $\operatorname{Supp} M = V(\operatorname{Ann}(M))$, where $V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec} A : \mathfrak{p} \supset \mathfrak{a}\}$ and $\operatorname{Ann}(M) = \{a \in A : aM = 0\}.$

Solution. Let $\mathfrak{p} \in \operatorname{Spec} A$ be so that $M_{\mathfrak{p}} \neq 0$. If aM = 0 then $aM_{\mathfrak{p}} = 0$ so if $a \notin \mathfrak{p}$ then $M_{\mathfrak{p}} = 0$; hence $\operatorname{Ann}(M) \subset \mathfrak{p}$.

Conversely, suppose $\operatorname{Ann}(M) \subset \mathfrak{p}$. Let m_1, \ldots, m_r generate M over A. Suppose that $M_{\mathfrak{p}} = 0$; then for all i there exists an $a_i \notin \mathfrak{p}$ such that $a_i m_i = 0 \in M$. Then $a = \prod_i a_i$ has aM = 0; therefore $a \in \mathfrak{p}$, a contradiction.