MATH 250B: COMMUTATIVE ALGEBRA HOMEWORK \#6

JOHN VOIGHT

Problem 1. Let R be a ring. Let $N=\operatorname{rad} R=\bigcap_{\mathfrak{m}} \mathfrak{m}$ be the intersection of all maximal left ideals of R.
(a) Show that $N E=0$ for every simple R-module E. Show that N is a twosided ideal.
(b) Show that $\operatorname{rad}(R / N)=0$.

Solution. By the beginning of (XVII §6), there is a bijection between maximal left ideals and simple R-modules (up to isomorphism) and $E \cong R / M$ for a maximal left ideal M. Already, then, $N \subset M=$ Ann E, so $N E=0$. Moreover, since $N(R / M)=0$ for all maximal left ideals $M, N R \subset M$ for all M and therefore $N R \subset \bigcap_{M} M=N$, so N is also a right ideal.

For (b), note that every maximal ideal of R / N is the image of a maximal ideal M of R containing N (under the natural surjection $R \rightarrow R / N$). But every maximal ideal contains N, so $\operatorname{rad}(R / N)$ is the image of $\operatorname{rad}(R)=N$ in R / N, i.e. $\operatorname{rad}(R / N)=$ 0 .

Problem 2. A ring is (left) artinian if every descending sequence of left ideals stabilizes.
(a) Show that a finite-dimensional algebra A over a field k is artinian.
(b) If R is artinian, show that every nonzero left ideal contains a simple left ideal.
(c) If R is artinian, show that every nonempty set of left ideals S contains a minimal left ideal.

Solution. A left ideal of A is in particular a finite-dimensional k-vector space, so for any sequence $J_{1} \supset J_{2} \supset \ldots$ we have $\operatorname{dim}_{k} A \geq \operatorname{dim}_{k} J_{1} \geq \ldots$ and this can only have finitely many strict inequalities; therefore the original sequence of ideals stabilizes.

For (b), let $J=J_{1}$ be any nonzero left ideal of R. If J itself is simple, we are done; otherwise it properly contains a nonzero left ideal J_{2}. Continuing in this fashion, we obtain $J=J_{1} \supsetneq J_{2} \supsetneq \ldots$ which stabilizes as R is artinian. The final stable factor $J_{n} \neq 0$ is a simple left ideal of J.

Finally, for (c) let $J_{1} \in S$; if J_{1} is not minimal, there exists $J_{2} \in S$ such that $J_{1} \supsetneq J_{2}$. Continuing in this way we obtain a descending chain of left ideals and since R is artinian, this procedure must eventually terminate and J_{n} is a minimal ideal in S.

[^0]Problem 3. Let R be artinian. Show that $\operatorname{rad} R=0$ if and only if R is semisimple.
Solution. We must assume that R is not the zero ring since by definition the zero ring is not semisimple ($\S 4$).

Since R is artinian, we claim that we can write $\operatorname{rad} R=\bigcap_{i=1}^{t} M_{i}$ for a finite set of maximal (left) ideals M_{1}, \ldots, M_{t}. Otherwise, there would exist a descending chain $M_{1} \supsetneq M_{1} \cap M_{2} \supsetneq \ldots$ of left ideals of R.

Suppose that $\operatorname{rad} R=0$. Then the map $R \rightarrow \bigoplus_{i} R / M_{i}$ is injective, since its kernel is $\bigcap_{i} M_{i}=\operatorname{rad} R=0$. But each R / M_{i} is simple, since each M_{i} is maximal ; therefore R is (isomorphic to) a submodule of a semisimple module, so R is semisimple.

If R is semisimple, write $R \cong \bigoplus_{i} E_{i}$ an isomorphism of R-modules with E_{i} simple. Then $M_{i}=$ Ann E_{i} is a maximal left ideal of R and \bigcap_{i} Ann $E_{i}=\bigcap_{i} M_{i}=0$. But $\operatorname{rad} R \subset \bigcap_{i} M_{i}=0$, so $\operatorname{rad} R=0$. Note this does not require that R be artinian!

Problem 4 (Nakayama's Lemma). Let R be a ring and M a finitely generated module. Let $N=\operatorname{rad} R$. If $N M=M$, show that $M=0$.

Solution. Let m_{1}, \ldots, m_{r} be a minimal generating set for M (i.e. no smaller subset generates $M)$. Then there exist $n_{1}, \ldots, n_{r} \in N$ such that $n_{1} m_{1}+\cdots+n_{r} m_{r}=$ m_{r}, so $\left(1-n_{r}\right) m_{r}=n_{1} m_{1}+\cdots+n_{r-1} m_{r-1}$. We know $1-n_{1}$ must be left invertible (otherwise $1-n_{1}$ is contained in some maximal left ideal and so too would $n_{1}+\left(1-n_{1}\right)=1$-but then m_{1}, \ldots, m_{r-1} generate M, contradicting minimality. Therefore M had no such minimal generating set, i.e. $M=0$.

Problem 5.

(a) Let J be a two-sided nilpotent ideal of R. Show that J is contained in the (Jacobson) radical.
(b) Conversely, assume that R is Artinian. Show that its Jacobson radical is nilpotent, i.e., that there exists an integer $r \geq 1$ such that $N^{r}=0$. [Hint: Consider the descending sequence of powers N^{r}, and apply Nakayama to a minimal finitely generated left ideal $L \subset N^{\infty}$ such that $N^{\infty} L \neq 0$.]

Solution. For (a), suppose that $x \in J$ has $x \notin M$ for some maximal ideal M. Then $R x+M=R$, so there exists an $a \in R$ and $m \in M$ such that $a x+m=1$. But $a x \in J$ is nilpotent, so say $(a x)^{n}=0$. Then

$$
\left(1+\cdots+(a x)^{n-1}\right)(1-a x)=1-(a x)^{n}=1
$$

so $m=1-a x$ is left invertible, a contradiction since $m \in M$. Hence no such x exists, and $J \subset \operatorname{rad} R$.

For (b), let $N=\operatorname{rad} R$; then $N \supset N^{2} \supset \ldots$ is a descending chain of left ideals, so it stabilizes, say the limit is $N^{r}=N^{r+1}=\ldots$. Suppose that $N^{r} \neq 0$: then in particular, $N^{r} N=N^{r+1}=N^{r} \neq 0$. Let S be the set of left ideals L such that $N^{r} L \neq 0$. We have shown that $N \in S$, so $S \neq \emptyset$, so by Exercise 2(c), there is a minimal element $L \in S$. By minimality, we know that L is finitely generated (if $N^{r} L \neq 0$ there exists $x \in L$ such that $N^{r} x \neq 0$, so $R x \in S$ and hence $L=R x$). By Nakayama's lemma, since $N\left(N^{r} L\right)=N^{r} L$, we must have $N^{r} L=0$, a contradiction. Therefore $N^{r}=0$.

Problem 6. Let R be a semisimple commutative ring. Show that R is a direct product of fields.
Solution. By Theorem 4.3, every semisimple ring is the (finite) product of simple rings. A commutative simple ring k must be a field: the zero ring is not simple, and if $a \in k$ is nonzero, then (a) is a (two-sided) ideal hence by Theorem $5.2,(a)=k$, so $a \in k^{*}$ and k is a field.

Problem 7. Let R be a finite-dimensional commutative algebra over a field k. If R has no nilpotent element $\neq 0$, show that R is semisimple.

Solution. R is Artinian by Exercise 2(a), and $\operatorname{rad} R$ is nilpotent by Exercise 5(b); by hypothesis, then, $\operatorname{rad} R=0$, so by Exercise $3, R$ is semisimple.

Problem 10. Let E be a finite-dimensional vector space over a field k. Let $A \in$ $\operatorname{End}_{k}(E)$. Show that the k-algebra R generated by A is semisimple if and only if its minimal polynomial has no factors of multiplicity >1 over k.
Solution. Let $m(t)=\prod_{i=1}^{r} p_{i}(t)^{e_{i}}$ be the minimal polynomial of A written as the product of irreducibles. Then by the Chinese remainder theorem,

$$
R=k[t] /(m(t)) \cong \prod_{i=1}^{r} k[t] /\left(p_{i}(t)^{e_{i}}\right) .
$$

The k-algebra R is commutative, so by Exercise $6, R$ is semisimple (if and) only if R is a direct product of fields. But R is a product of fields if and only if $e_{i}=1$ for each i, for otherwise one factor has a nilpotent element, which is the result.

[^0]: Date: March 18, 2003.
 XVII: $1-7,9,10,13$.

