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Problem 1. Let R be a ring. Let N = radR =
⋂

m m be the intersection of all
maximal left ideals of R.

(a) Show that NE = 0 for every simple R-module E. Show that N is a two-
sided ideal.

(b) Show that rad(R/N) = 0.

Solution. By the beginning of (XVII §6), there is a bijection between maximal left
ideals and simple R-modules (up to isomorphism) and E ∼= R/M for a maximal
left ideal M . Already, then, N ⊂ M = AnnE, so NE = 0. Moreover, since
N(R/M) = 0 for all maximal left ideals M , NR ⊂ M for all M and therefore
NR ⊂

⋂
M M = N , so N is also a right ideal.

For (b), note that every maximal ideal of R/N is the image of a maximal ideal
M of R containing N (under the natural surjection R → R/N). But every maximal
ideal contains N , so rad(R/N) is the image of rad(R) = N in R/N , i.e. rad(R/N) =
0.

Problem 2. A ring is (left) artinian if every descending sequence of left ideals
stabilizes.

(a) Show that a finite-dimensional algebra A over a field k is artinian.
(b) If R is artinian, show that every nonzero left ideal contains a simple left

ideal.
(c) If R is artinian, show that every nonempty set of left ideals S contains a

minimal left ideal.

Solution. A left ideal of A is in particular a finite-dimensional k-vector space, so
for any sequence J1 ⊃ J2 ⊃ . . . we have dimk A ≥ dimk J1 ≥ . . . and this can
only have finitely many strict inequalities; therefore the original sequence of ideals
stabilizes.

For (b), let J = J1 be any nonzero left ideal of R. If J itself is simple, we are
done; otherwise it properly contains a nonzero left ideal J2. Continuing in this
fashion, we obtain J = J1 ) J2 ) . . . which stabilizes as R is artinian. The final
stable factor Jn 6= 0 is a simple left ideal of J .

Finally, for (c) let J1 ∈ S; if J1 is not minimal, there exists J2 ∈ S such that
J1 ) J2. Continuing in this way we obtain a descending chain of left ideals and
since R is artinian, this procedure must eventually terminate and Jn is a minimal
ideal in S.
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Problem 3. Let R be artinian. Show that radR = 0 if and only if R is semisimple.

Solution. We must assume that R is not the zero ring since by definition the zero
ring is not semisimple (§4).

Since R is artinian, we claim that we can write radR =
⋂t

i=1 Mi for a finite
set of maximal (left) ideals M1, . . . ,Mt. Otherwise, there would exist a descending
chain M1 ) M1 ∩M2 ) . . . of left ideals of R.

Suppose that radR = 0. Then the map R →
⊕

i R/Mi is injective, since its
kernel is

⋂
i Mi = radR = 0. But each R/Mi is simple, since each Mi is maxi-

mal; therefore R is (isomorphic to) a submodule of a semisimple module, so R is
semisimple.

If R is semisimple, write R ∼=
⊕

i Ei an isomorphism of R-modules with Ei

simple. Then Mi = AnnEi is a maximal left ideal of R and
⋂

i AnnEi =
⋂

i Mi = 0.
But radR ⊂

⋂
i Mi = 0, so radR = 0. Note this does not require that R be artinian!

Problem 4 (Nakayama’s Lemma). Let R be a ring and M a finitely generated
module. Let N = radR. If NM = M , show that M = 0.

Solution. Let m1, . . . ,mr be a minimal generating set for M (i.e. no smaller subset
generates M). Then there exist n1, . . . , nr ∈ N such that n1m1 + · · · + nrmr =
mr, so (1 − nr)mr = n1m1 + · · · + nr−1mr−1. We know 1 − n1 must be left
invertible (otherwise 1−n1 is contained in some maximal left ideal and so too would
n1 + (1− n1) = 1)—but then m1, . . . ,mr−1 generate M , contradicting minimality.
Therefore M had no such minimal generating set, i.e. M = 0.

Problem 5.

(a) Let J be a two-sided nilpotent ideal of R. Show that J is contained in the
(Jacobson) radical.

(b) Conversely, assume that R is Artinian. Show that its Jacobson radical is
nilpotent, i.e., that there exists an integer r ≥ 1 such that Nr = 0. [Hint:
Consider the descending sequence of powers Nr, and apply Nakayama to a
minimal finitely generated left ideal L ⊂ N∞ such that N∞L 6= 0.]

Solution. For (a), suppose that x ∈ J has x 6∈ M for some maximal ideal M . Then
Rx + M = R, so there exists an a ∈ R and m ∈ M such that ax + m = 1. But
ax ∈ J is nilpotent, so say (ax)n = 0. Then

(1 + · · ·+ (ax)n−1)(1− ax) = 1− (ax)n = 1

so m = 1 − ax is left invertible, a contradiction since m ∈ M . Hence no such x
exists, and J ⊂ radR.

For (b), let N = radR; then N ⊃ N2 ⊃ . . . is a descending chain of left ideals,
so it stabilizes, say the limit is Nr = Nr+1 = . . . . Suppose that Nr 6= 0: then in
particular, NrN = Nr+1 = Nr 6= 0. Let S be the set of left ideals L such that
NrL 6= 0. We have shown that N ∈ S, so S 6= ∅, so by Exercise 2(c), there is a
minimal element L ∈ S. By minimality, we know that L is finitely generated (if
NrL 6= 0 there exists x ∈ L such that Nrx 6= 0, so Rx ∈ S and hence L = Rx). By
Nakayama’s lemma, since N(NrL) = NrL, we must have NrL = 0, a contradiction.
Therefore Nr = 0.
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Problem 6. Let R be a semisimple commutative ring. Show that R is a direct
product of fields.

Solution. By Theorem 4.3, every semisimple ring is the (finite) product of simple
rings. A commutative simple ring k must be a field: the zero ring is not simple, and
if a ∈ k is nonzero, then (a) is a (two-sided) ideal hence by Theorem 5.2, (a) = k,
so a ∈ k∗ and k is a field.

Problem 7. Let R be a finite-dimensional commutative algebra over a field k. If
R has no nilpotent element 6= 0, show that R is semisimple.

Solution. R is Artinian by Exercise 2(a), and radR is nilpotent by Exercise 5(b);
by hypothesis, then, rad R = 0, so by Exercise 3, R is semisimple.

Problem 10. Let E be a finite-dimensional vector space over a field k. Let A ∈
Endk(E). Show that the k-algebra R generated by A is semisimple if and only if its
minimal polynomial has no factors of multiplicity > 1 over k.

Solution. Let m(t) =
∏r

i=1 pi(t)ei be the minimal polynomial of A written as the
product of irreducibles. Then by the Chinese remainder theorem,

R = k[t]/(m(t)) ∼=
r∏

i=1

k[t]/(pi(t)ei).

The k-algebra R is commutative, so by Exercise 6, R is semisimple (if and) only
if R is a direct product of fields. But R is a product of fields if and only if ei = 1
for each i, for otherwise one factor has a nilpotent element, which is the result.


