MATH 250B: COMMUTATIVE ALGEBRA HOMEWORK #6

JOHN VOIGHT

Problem 1. Let R be a ring. Let $N = \operatorname{rad} R = \bigcap_{\mathfrak{m}} \mathfrak{m}$ be the intersection of all maximal left ideals of R.

- (a) Show that NE = 0 for every simple R-module E. Show that N is a two-sided ideal.
- (b) Show that rad(R/N) = 0.

Solution. By the beginning of (XVII §6), there is a bijection between maximal left ideals and simple *R*-modules (up to isomorphism) and $E \cong R/M$ for a maximal left ideal *M*. Already, then, $N \subset M = \operatorname{Ann} E$, so NE = 0. Moreover, since N(R/M) = 0 for all maximal left ideals *M*, $NR \subset M$ for all *M* and therefore $NR \subset \bigcap_M M = N$, so *N* is also a right ideal.

For (b), note that every maximal ideal of R/N is the image of a maximal ideal M of R containing N (under the natural surjection $R \to R/N$). But every maximal ideal contains N, so rad(R/N) is the image of rad(R) = N in R/N, i.e. rad(R/N) = 0.

Problem 2. A ring is (left) artinian if every descending sequence of left ideals stabilizes.

- (a) Show that a finite-dimensional algebra A over a field k is artinian.
- (b) If R is artinian, show that every nonzero left ideal contains a simple left ideal.
- (c) If R is artinian, show that every nonempty set of left ideals S contains a minimal left ideal.

Solution. A left ideal of A is in particular a finite-dimensional k-vector space, so for any sequence $J_1 \supset J_2 \supset \ldots$ we have $\dim_k A \ge \dim_k J_1 \ge \ldots$ and this can only have finitely many strict inequalities; therefore the original sequence of ideals stabilizes.

For (b), let $J = J_1$ be any nonzero left ideal of R. If J itself is simple, we are done; otherwise it properly contains a nonzero left ideal J_2 . Continuing in this fashion, we obtain $J = J_1 \supseteq J_2 \supseteq \ldots$ which stabilizes as R is artinian. The final stable factor $J_n \neq 0$ is a simple left ideal of J.

Finally, for (c) let $J_1 \in S$; if J_1 is not minimal, there exists $J_2 \in S$ such that $J_1 \supseteq J_2$. Continuing in this way we obtain a descending chain of left ideals and since R is artinian, this procedure must eventually terminate and J_n is a minimal ideal in S.

Date: March 18, 2003.

XVII: 1-7, 9, 10, 13.

JOHN VOIGHT

Problem 3. Let R be artinian. Show that $\operatorname{rad} R = 0$ if and only if R is semisimple.

Solution. We must assume that R is not the zero ring since by definition the zero ring is not semisimple (§4).

Since R is artinian, we claim that we can write $\operatorname{rad} R = \bigcap_{i=1}^{t} M_i$ for a finite set of maximal (left) ideals M_1, \ldots, M_t . Otherwise, there would exist a descending chain $M_1 \supseteq M_1 \cap M_2 \supseteq \ldots$ of left ideals of R.

Suppose that rad R = 0. Then the map $R \to \bigoplus_i R/M_i$ is injective, since its kernel is $\bigcap_i M_i = \operatorname{rad} R = 0$. But each R/M_i is simple, since each M_i is maximal; therefore R is (isomorphic to) a submodule of a semisimple module, so R is semisimple.

If R is semisimple, write $R \cong \bigoplus_i E_i$ an isomorphism of R-modules with E_i simple. Then $M_i = \operatorname{Ann} E_i$ is a maximal left ideal of R and $\bigcap_i \operatorname{Ann} E_i = \bigcap_i M_i = 0$. But rad $R \subset \bigcap_i M_i = 0$, so rad R = 0. Note this does not require that R be artinian!

Problem 4 (Nakayama's Lemma). Let R be a ring and M a finitely generated module. Let $N = \operatorname{rad} R$. If NM = M, show that M = 0.

Solution. Let m_1, \ldots, m_r be a minimal generating set for M (i.e. no smaller subset generates M). Then there exist $n_1, \ldots, n_r \in N$ such that $n_1m_1 + \cdots + n_rm_r = m_r$, so $(1 - n_r)m_r = n_1m_1 + \cdots + n_{r-1}m_{r-1}$. We know $1 - n_1$ must be left invertible (otherwise $1 - n_1$ is contained in some maximal left ideal and so too would $n_1 + (1 - n_1) = 1$)—but then m_1, \ldots, m_{r-1} generate M, contradicting minimality. Therefore M had no such minimal generating set, i.e. M = 0.

Problem 5.

- (a) Let J be a two-sided nilpotent ideal of R. Show that J is contained in the (Jacobson) radical.
- (b) Conversely, assume that R is Artinian. Show that its Jacobson radical is nilpotent, i.e., that there exists an integer r ≥ 1 such that N^r = 0. [Hint: Consider the descending sequence of powers N^r, and apply Nakayama to a minimal finitely generated left ideal L ⊂ N[∞] such that N[∞]L ≠ 0.]

Solution. For (a), suppose that $x \in J$ has $x \notin M$ for some maximal ideal M. Then Rx + M = R, so there exists an $a \in R$ and $m \in M$ such that ax + m = 1. But $ax \in J$ is nilpotent, so say $(ax)^n = 0$. Then

$$(1 + \dots + (ax)^{n-1})(1 - ax) = 1 - (ax)^n = 1$$

so m = 1 - ax is left invertible, a contradiction since $m \in M$. Hence no such x exists, and $J \subset \operatorname{rad} R$.

For (b), let $N = \operatorname{rad} R$; then $N \supset N^2 \supset \ldots$ is a descending chain of left ideals, so it stabilizes, say the limit is $N^r = N^{r+1} = \ldots$ Suppose that $N^r \neq 0$: then in particular, $N^r N = N^{r+1} = N^r \neq 0$. Let S be the set of left ideals L such that $N^r L \neq 0$. We have shown that $N \in S$, so $S \neq \emptyset$, so by Exercise 2(c), there is a minimal element $L \in S$. By minimality, we know that L is finitely generated (if $N^r L \neq 0$ there exists $x \in L$ such that $N^r x \neq 0$, so $Rx \in S$ and hence L = Rx). By Nakayama's lemma, since $N(N^r L) = N^r L$, we must have $N^r L = 0$, a contradiction. Therefore $N^r = 0$. **Problem 6.** Let R be a semisimple commutative ring. Show that R is a direct product of fields.

Solution. By Theorem 4.3, every semisimple ring is the (finite) product of simple rings. A commutative simple ring k must be a field: the zero ring is not simple, and if $a \in k$ is nonzero, then (a) is a (two-sided) ideal hence by Theorem 5.2, (a) = k, so $a \in k^*$ and k is a field.

Problem 7. Let R be a finite-dimensional commutative algebra over a field k. If R has no nilpotent element $\neq 0$, show that R is semisimple.

Solution. R is Artinian by Exercise 2(a), and rad R is nilpotent by Exercise 5(b); by hypothesis, then, rad R = 0, so by Exercise 3, R is semisimple.

Problem 10. Let *E* be a finite-dimensional vector space over a field *k*. Let $A \in \text{End}_k(E)$. Show that the *k*-algebra *R* generated by *A* is semisimple if and only if its minimal polynomial has no factors of multiplicity > 1 over *k*.

Solution. Let $m(t) = \prod_{i=1}^{r} p_i(t)^{e_i}$ be the minimal polynomial of A written as the product of irreducibles. Then by the Chinese remainder theorem,

$$R = k[t]/(m(t)) \cong \prod_{i=1}^{r} k[t]/(p_i(t)^{e_i}).$$

The k-algebra R is commutative, so by Exercise 6, R is semisimple (if and) only if R is a direct product of fields. But R is a product of fields if and only if $e_i = 1$ for each i, for otherwise one factor has a nilpotent element, which is the result.