MATH 250B: COMMUTATIVE ALGEBRA HOMEWORK \#5

JOHN VOIGHT

Problem 1. Let A be a commutative ring. Let M be a module, and N a submodule. Let $N=Q_{1} \cap \cdots \cap Q_{r}$ be a primary decomposition of N. Let $\overline{Q_{i}}=Q_{i} / N$. Show that $0=\overline{Q_{1}} \cap \cdots \cap \overline{Q_{r}}$ is a primary decomposition of 0 in M / N. State and prove the converse.

Solution. Set (or module) theoretically, we indeed have $0=\bigcap_{i} \overline{Q_{i}}$ if and only if $N=\bigcap_{i} Q_{i}$.

Now $Q \subset M$ is primary if and only if $Q \neq M$ and $a_{M / Q}$ is injective or nilpotent. Therefore $\bar{Q}=Q / N \subset M / N$ is primary if and only if $Q / N \neq M / N$ and $a_{(M / N) /(Q / N)}$ is injective or nilpotent. For any $Q \supset N$, we have $(M / N) /(Q / N) \cong$ M / Q, so $Q \subset M$ is primary (contaning N) if and only if $\bar{Q} \subset M / N$ is primary.

The converse is also now proven: Let $0=\bigcap_{i} \overline{Q_{i}}$ be a primary decomposition for 0 in M / N. Let Q_{i} be the inverse image of $\overline{Q_{i}}$ in the surjection $M \rightarrow M / N$. Then $N=\bigcap_{i} \overline{Q_{i}}$ is a primary decomposition for N.

Problem 2. Let \mathfrak{p} be a prime ideal, and $\mathfrak{a}, \mathfrak{b}$ ideals of A. If $\mathfrak{a b} \subset \mathfrak{p}$, show that $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.

Solution. If $\mathfrak{a} \not \subset \mathfrak{p}$ and $\mathfrak{b} \not \subset \mathfrak{p}$, then there exists an $a \in \mathfrak{a} \backslash \mathfrak{p}$ and $b \in \mathfrak{b} \backslash \mathfrak{p}$. Then $a b \in \mathfrak{a b} \subset \mathfrak{p}$, so since \mathfrak{p} is prime, we have $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$, a contradiction.

Problem 3. Let \mathfrak{q} be a primary ideal. Let $\mathfrak{a}, \mathfrak{b}$ be ideals, and assume $\mathfrak{a b} \subset \mathfrak{q}$. Assume that \mathfrak{b} is finitely generated. Show that $\mathfrak{a} \subset \mathfrak{q}$ or there exists some positive integer n such that $\mathfrak{b}^{n} \subset \mathfrak{q}$.

Solution. If $\mathfrak{a} \subset \mathfrak{q}$, we are done. Otherwise, let $a \in \mathfrak{a} \backslash \mathfrak{q}$. Let b_{1}, \ldots, b_{r} generate \mathfrak{b} as an ideal. Then for each $i, a b_{i} \in \mathfrak{q}$ but $a \notin \mathfrak{q}$ so there exists an integer n_{i} such that $b_{i}^{n_{i}} \in \mathfrak{q}$. Let $n=r \max _{i} n_{i}$. Then \mathfrak{b}^{n} is generated by products $b=b_{1}^{m_{1}} \ldots b_{r}^{m_{r}}$ with $\sum_{i} m_{i}=n$; by the pigeonhole principle i such that $e_{i} \geq n_{i}$, so $b \in \mathfrak{q}$ for all $b \in \mathfrak{b}^{n}$.

Problem 4. Let A be noetherian, and let \mathfrak{q} be a \mathfrak{p}-primary ideal. Show that there exists some $n \geq 1$ such that $\mathfrak{p}^{n} \subset \mathfrak{q}$.

[^0]Solution. Since A is noetherian, the ideal \mathfrak{p} is finitely generated; let p_{1}, \ldots, p_{r} generate \mathfrak{p}. We have by definition that

$$
\mathfrak{p}=\left\{a \in A: a^{n} \in \mathfrak{q} \text { for some } n \geq 1\right\} .
$$

Let n_{i} be such that $p_{i}^{n_{i}} \in \mathfrak{q}$, and let $n=r \max _{i} n_{i}$. Then as in the previous exercise we see that $\mathfrak{p}^{r n} \subset \mathfrak{q}$.

Problem 5. Let A be an arbitrary commutative ring and let S be a multiplicative subset. Let \mathfrak{p} be a prime ideal and let \mathfrak{q} be a \mathfrak{p}-primary ideal. Then \mathfrak{p} intersects S if and only if \mathfrak{q} intersects S. Furthermore, if \mathfrak{q} does not intersect S, then $S^{-1} \mathfrak{q}$ is $S^{-1} \mathfrak{p}$-primary in $S^{-1} A$.
Solution. If $f \in \mathfrak{p} \cap S$, then there exists an n such that $f^{n} \in \mathfrak{q}$ since \mathfrak{q} is \mathfrak{p}-primary and S is multiplicatively closed. The reverse inclusion follows immediately from $\mathfrak{q} \subset \mathfrak{p}$.

To the second statement, we know that $S^{-1} \mathfrak{q} \neq A$, since $S \cap \mathfrak{q}=\emptyset$. We now see that

$$
S^{-1} A / S^{-1} \mathfrak{q} \cong S^{-1}(A / \mathfrak{q})
$$

since the map $S^{-1} A \rightarrow S^{-1}(A / \mathfrak{q})$ clearly has kernel $S^{-1} \mathfrak{q}$. Therefore $a_{S^{-1} A / S^{-1} \mathfrak{q}}=$ $a_{S^{-1}(A / \mathfrak{q})}$, we know that if $a_{A / \mathfrak{q}}$ is injective or nilpotent then $a_{S^{-1}(A / \mathfrak{q})}$ is injective (since localization is flat) or nilpotent, respectively.

Finally, we see that $a \in A$ has $a^{n} \in \mathfrak{q}$ for some $n \geq 1$ if and only if $a / 1 \in S^{-1} A$ has $(a / 1)^{n} \in S^{-1} \mathfrak{q}$ if and only if for all $s \in S,(a / s)^{n} \in S^{-1} \mathfrak{q}$, so $S^{-1} \mathfrak{q}$ is $S^{-1} \mathfrak{p}$ primary. (Or note that $S^{-1} \mathfrak{p}=S^{-1} \sqrt{\mathfrak{q}}=\sqrt{S^{-1} \mathfrak{q}}$.)

Problem 6. If \mathfrak{a} is an ideal of A, show there is a bijection between the prime ideals of A which do not intersect S and the prime ideals of $S^{-1} A$, given by $\mathfrak{p} \mapsto S^{-1} \mathfrak{p}$ and $S^{-1} \mathfrak{p} \mapsto S^{-1} \mathfrak{p} \cap A=\mathfrak{p}$.

Prove a similar statement for primary ideals instead of prime ideals.
Solution (sketch). Let $\mathfrak{p} \subset A$ be a prime ideal. We show that $\mathfrak{p} \cap S=\emptyset$ if and only if $S^{-1} \mathfrak{p}$ is a prime ideal of $S^{-1} A$. From the previous exercise, we have $S^{-1}(A / \mathfrak{p}) \cong$ $S^{-1} A / S^{-1} \mathfrak{p}$. Since A / \mathfrak{p} is a domain, $S^{-1}(A / \mathfrak{p})$ is a domain if and only if $S \cap \mathfrak{p}=\emptyset$ if and only if $S^{-1} \mathfrak{p}$ is prime.

Also from the previous exercise, we see that $S^{-1} \mathfrak{q}$ is primary if and only if $S^{-1} \mathfrak{p}$ is primary, and by the correspondence of primes we have a similar bijection for \mathfrak{p}-primary ideals.

Problem 7. Let $\mathfrak{a}=\mathfrak{q}_{1} \cap \cdots \cap \mathfrak{q}_{r}$ be a reduced primary decomposition of an ideal. Assume that $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{i}$ do not intersect S, but that \mathfrak{q}_{j} intersects S for $j>i$. Show that

$$
S^{-1} \mathfrak{a}=S^{-1} \mathfrak{q}_{1} \cap \cdots \cap S^{-1} \mathfrak{q}_{i}
$$

is a reduced primary decomposition of $S^{-1} \mathfrak{a}$.
Solution. Note that for $j>i$, since $\mathfrak{q}_{j} \cap S=\emptyset$, we have $S^{-1} \mathfrak{q}_{j}=S^{-1} A$, so already $S^{-1} \mathfrak{a}=\bigcap_{j=1}^{i} S^{-1} \mathfrak{q}_{j}$ is a primary decomposition of $S^{-1} \mathfrak{a}$.

The bijection of the previous exercise implies that the primes $S^{-1} \mathfrak{p}_{i}$ are distinct whenever \mathfrak{p}_{i} are distinct, for $j \leq i$. If the decomposition is not reduced, then we
have

$$
S^{-1} \mathfrak{q}_{k} \subset \bigcap_{j \neq k} S^{-1} \mathfrak{q}_{j}
$$

for some $1 \leq i \leq k$; as the bijection preserves inclusions, we have

$$
S^{-1} \mathfrak{q}_{k} \cap A \subset \mathfrak{q} \bigcap_{j \neq k} S^{-1} \mathfrak{q}_{j} \cap A=\bigcap_{j \neq k} \mathfrak{q}_{j}
$$

so the original decomposition is not reduced, a contradiction.

Problem 8. Let A be a local ring. Show that any idempotent $\neq 0$ in A is necessarily the unit element.

Solution. Note that $e^{2}=e$ if and only if $(1-e)^{2}=1-e$. We cannot have both e and $1-e$ in the maximal ideal \mathfrak{m}, since then $e+(1-e)=1 \in \mathfrak{m}$. Therefore, say, $e \notin \mathfrak{m}$, so since A is local, e is a unit. But $e(1-e)=0$, so $1-e=0$, i.e. $e=1$.

Problem *. Find an example of an ideal I in an integral domain A for which there is a prime in $\operatorname{Ass}(A / I)$ that is not in $\operatorname{Ass}(A)$.

Solution. Take $I=p^{2} \mathbb{Z}$ and $A=\mathbb{Z}$. Then $\operatorname{Ass}(\mathbb{Z})=\{(0)\}$ since the annihilator of any $x \in \mathbb{Z}$ is just 0 . However, $\operatorname{Ass}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)=\{(0),(p)\}$, since this is the set of all primes of $\mathbb{Z} / p^{2} \mathbb{Z}$ and (0) is the annihilator of 1 and (p) is the annihilator of the element $p \in \mathbb{Z} / p^{2} \mathbb{Z}$.

[^0]: Date: March 6, 2003
 X: 1-8, *.

