MATH 250B: COMMUTATIVE ALGEBRA HOMEWORK \#4

JOHN VOIGHT

Problem 1. Let E be a finite-dimensional vector space over a field k. Let x_{1}, \ldots, x_{p} be elements of E such that $x_{1} \wedge \cdots \wedge x_{p} \neq 0$, and similarly $y_{1} \wedge \cdots \wedge y_{p} \neq 0$. If $c \in k$ and

$$
x_{1} \wedge \cdots \wedge x_{p}=c y_{1} \wedge \cdots \wedge y_{p}
$$

show that x_{1}, \ldots, x_{p} and y_{1}, \ldots, y_{p} generate the same subspace.
Solution. This reduces to the fact: $z_{1} \wedge \cdots \wedge z_{r}=0$ if and only if the elements z_{i} are linearly dependent. After all, a dependence relation, say $z_{r}=\sum_{i} a_{i} z_{i}$, allows us to write

$$
z_{1} \wedge \cdots \wedge z_{r}=\sum_{i} z_{1} \wedge \cdots \wedge\left(a_{i} z_{i}\right)=0
$$

by the alternating property.
This implies that the elements $x_{i} \in E$ are linearly independent, as are the $y_{j} \in E$; suppose that the element y_{j} is not in the span of the x_{i}, which is to say, the elements $x_{1}, \ldots, x_{p}, y_{j}$ are linearly independent. Then $x_{1} \wedge \cdots \wedge x_{p} \wedge y_{j} \neq 0$, but

$$
c y_{1} \wedge \cdots \wedge y_{p} \wedge y_{j}=0
$$

a contradiction. Therefore the subspace generated by the y_{j} is contained in the span of the x_{i}; since both are spaces of dimension p, they are equal.

Problem 2. Let E be a free module of dimension n over the commutative ring R. Let $f: E \rightarrow E$ be a linear map. Let $\alpha_{r}(f)=\operatorname{tr} \bigwedge^{r}(f)$, where $\bigwedge^{r}(f)$ is the endomorphism of $\bigwedge^{r}(E)$ into itself induced by f. We have

$$
\alpha_{0}(f)=1, \quad \alpha_{1}(f)=\operatorname{tr}(f), \quad \alpha_{n}(f)=\operatorname{det} f,
$$

and $\alpha_{r}(f)=0$ if $r>n$. Show that

$$
\operatorname{det}(1+f)=\sum_{r \geq 0} \alpha_{r}(f)
$$

[Hint: As usual, prove the statement when f is represented by a matrix with variable coefficients over the integers.] Interpret the $\alpha_{r}(f)$ in terms of the coefficients of the characteristic polynomial of f.

Solution. First assume that $R=k$ is an algebraically closed field. Then we can choose a basis e_{1}, \ldots, e_{n} for E such that f is given in Jordan canonical form (see

[^0]XIX: 1-4.

Theorem 2.4 in §XIV, for example), with diagonal elements $\alpha_{1}, \ldots, \alpha_{n}$ (not necessarily distinct). Note the choice of basis does not affect the value of $\operatorname{det}(1+f)$. Then

$$
\operatorname{det}(1+f)=\prod_{i=1}^{n}\left(1+\alpha_{i}\right)=\sum_{I \subset\{1, \ldots, n\}} \alpha_{I}
$$

where for $I \subset S=\{1, \ldots, n\}$ we denote $\alpha_{I}=\prod_{i \in I} \alpha_{i}$.
On the other hand, a basis for $\wedge^{r} E$ is given by $e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}$ for $i_{1}<\cdots<i_{r}$; by definition

$$
\bigwedge^{r}(f)\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}\right)=f\left(e_{i_{1}}\right) \wedge \cdots \wedge f\left(e_{i_{r}}\right)
$$

so since f in this basis is lower triangular,

$$
\operatorname{tr} \bigwedge^{r}(f)=\sum_{i_{1}<\cdots<i_{r}} \alpha_{i_{1}} \ldots \alpha_{i_{r}}
$$

Matching expressions, we obtain the desired result. Since by definition the characteristic polynomial of f is $P_{f}(t)=\operatorname{det}(t I-f)$, we see that $\operatorname{det}(1+f)=(-1)^{n} P_{f}(-1)$. From the Jordan decomposition, we have

$$
P_{f}(t)=\prod_{i}\left(t-\alpha_{i}\right)=\sum_{r=0}^{n} a_{r} t^{r}=\sum_{r=0}^{n}(-1)^{r} t^{r} \sum_{\substack{I \subset S \\ \# I=n-r}} \alpha_{I}
$$

matching these two, we find that $\alpha_{r}(f)=(-1)^{r} a_{n-r}$.
Now if A is a linear map given by a matrix $A=\left(x_{i j}\right)_{i, j}$ with indeterminate coefficients over \mathbb{Z}, then performing the above computation in an algebraic closure of $\mathbb{Q}\left(x_{i j}\right)_{i, j}$, we see then that the result holds for A. Since the conclusion is then an equality over $\mathbb{Z}\left[x_{i j}\right]$ (concerning the characteristic polynomial), by the homomorphism $\mathbb{Z}\left[x_{i j}\right] \rightarrow R$ which takes $x_{i j} \mapsto f_{i j}$, where $f=\left(f_{i j}\right)$, we see that the conclusion holds for any commutative ring R.

Problem 3. Let E be a finite dimensional free module over the commutative ring R. Let E^{\vee} be its dual module. For each integer $r \geq 1$, show that $\bigwedge^{r} E$ and $\bigwedge^{r} E^{\vee}$ are dual modules to each other, under the bilinear map such that

$$
\left(v_{1} \wedge \cdots \wedge v_{r}, v_{1}^{\prime} \wedge \cdots \wedge v_{r}^{\prime}\right) \mapsto \operatorname{det}\left(\left\langle v_{i}, v_{j}^{\prime}\right\rangle\right)
$$

where $\left\langle v_{i}, v_{j}^{\prime}\right\rangle$ is the value of v_{j}^{\prime} on v_{i}, as usual, for $v_{i} \in E$ and $v_{j}^{\prime} \in E^{\vee}$.
Solution. Let $f: \bigwedge^{r} E \times \bigwedge^{r} E^{\vee} \rightarrow R$ be the above map; we need to show that f is nonsingular, i.e. that the R-linear map

$$
\begin{aligned}
\phi: \bigwedge^{r} E & \rightarrow \operatorname{Hom}_{R}\left(\bigwedge^{r} E^{\vee}, R\right) \\
v_{1} \wedge \cdots \wedge v_{r} & \mapsto\left(\left(v_{1}^{\prime} \wedge \cdots \wedge v_{r}^{\prime}\right) \mapsto \operatorname{det}\left(\left\langle v_{i}, v_{j}^{\prime}\right\rangle\right)\right)
\end{aligned}
$$

is an isomorphism. Let e_{1}, \ldots, e_{n} be a basis for E, and let $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$ be the duals, so that

$$
\left\langle e_{i}, e_{j}^{\prime}\right\rangle= \begin{cases}1, & i=j \\ 0, & \text { else }\end{cases}
$$

A basis for $\bigwedge^{r} E$ is given by wedge products $e_{s}=e_{s_{1}, \ldots, s_{r}}=e_{s_{1}} \wedge \cdots \wedge e_{s_{r}}$. Then the wedges $e_{s_{1}, \ldots, s_{r}}^{\prime}=e_{s_{1}}^{\prime} \wedge \cdots \wedge e_{s_{r}}^{\prime}$ form a basis for $\Lambda^{r} E^{\vee}$, and a basis
for $\operatorname{Hom}_{R}\left(\bigwedge^{r} E^{\vee}, R\right)$ is given by the characteristic functions defined on basis vectors as

$$
\chi_{s}\left(e_{t}\right)=\chi_{s_{1}, \ldots, s_{r}}\left(e_{t}\right)= \begin{cases}1, & e_{t}=e_{s} \\ 0, & \text { else }\end{cases}
$$

Inside this notational morass, we now easily compute that in fact $\phi\left(e_{s}\right)=\chi_{s}$, since $\left.\phi\left(e_{s}\right)\left(e_{s}\right)=1=\operatorname{det}\left(\left\langle e_{s_{i}}, e_{s_{j}}\right\rangle\right)_{i, j}\right)$, the determinant of the identity matrix, and otherwise $\phi\left(e_{s}\right)\left(e_{t}\right)=0$. This shows that ϕ is an isomorphism.

Problem 4. Notation being as in the preceding exercise, let F be another R-module which is free, finite dimensional. Let $A: E \rightarrow F$ be a linear map. Relative to the bilinear map of the preceding exercise, show that the transpose of $\bigwedge^{r} A$ is $\bigwedge^{r}\left({ }^{t} A\right)$, i.e. is equal to the rth alternating product of the transpose of A.

Solution. It suffices to verify (see Chapter XIII, §5) that for all $e_{s} \in \Lambda^{r} E$ and $f_{s} \in \bigwedge^{r} F^{\vee}$ that

$$
\left\langle A e_{s}, f_{t}\right\rangle=\left\langle e_{s},{ }^{t} A f_{t}\right\rangle .
$$

But after all,

$$
\left\langle\bigwedge^{r}(A)\left(e_{s}\right), f_{t}\right\rangle=\operatorname{det}\left(\left\langle A e_{s_{i}}, f_{t_{j}}\right\rangle\right)=\operatorname{det}\left(\left\langle e_{s_{i}},{ }^{t} A f_{t_{j}}\right\rangle\right)=\left\langle e_{s}, \bigwedge^{r}\left({ }^{t} A\right)\left(f_{t}\right)\right\rangle ;
$$

the middle equality follows from the fact that ${ }^{t} A: F \rightarrow E$ is the transpose of A, and by the preceding exercise, \langle,$\rangle is nonsingular.$

[^0]: Date: February 20, 2003.

