MATH 250B: COMMUTATIVE ALGEBRA HOMEWORK \#3

JOHN VOIGHT

Some solutions are omitted or sketched.
Problem 6. Let M, N be flat. Show that $M \otimes N$ is flat.
Solution. If $E^{\prime} \hookrightarrow E$ is injective, then since M is flat, so is the map $E^{\prime} \otimes M \hookrightarrow E \otimes M$; since N is also flat, so too is the map $\left(E^{\prime} \otimes M\right) \otimes N \hookrightarrow(E \otimes M) \otimes N$. By associativity of the tensor product, we obtain the injection

$$
E^{\prime} \otimes(M \otimes N) \hookrightarrow E \otimes(M \otimes N)
$$

which is to say, $M \otimes N$ is flat.

Problem 7. Let F be a flat R-module, and let $a \in R$ be an element which is not a zerodivisor. Show that if ax $=0$ for some $x \in F$ then $x=0$.

Solution. The map $R \xrightarrow{a} R$ which is multiplication by a is injective since a is not a zerodivisor, by definition. Since M is flat, the map $R \otimes F \xrightarrow{a \otimes 1} R \otimes F$ is also injective. Since $R \otimes F \cong F$, we see that the map $F \xrightarrow{a} F$ is injective, which is what we were to show.

Problem 8. Prove the following:
(i) Let S be a multiplicative subset of R. Then $S^{-1} R$ is flat over R.
(ii) A module M is flat over R if and only if the localization $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$ for each prime ideal \mathfrak{p} of R.
(iii) Let R be a principal (entire) ring. A module F is flat if and only if F is torsion free.

Solution. Statement (i) follows from the fact that $S^{-1} E \cong S^{-1} R \otimes_{R} E$, and if $E^{\prime} \rightarrow E$ is injective, then so is $S^{-1} E^{\prime} \rightarrow S^{-1} E$.

For (ii), note that $M_{\mathfrak{p}}=R_{\mathfrak{p}} \otimes_{R} M$, so taking $S=R \backslash \mathfrak{p}$, we may apply (i) and Problem 6 to see that $M_{\mathfrak{p}}$ is flat for every prime ideal \mathfrak{p}. For the converse, if M is not flat, then there is an injection $E^{\prime} \rightarrow E$ of R-modules such that $E^{\prime} \otimes M \rightarrow E \otimes M$ is no longer an injection; let N be the kernel of this map. There exists a prime \mathfrak{p} such that $N_{\mathfrak{p}} \neq 0$ (for example, choose a maximal ideal containing all elements which annihilate N). Then $M_{\mathfrak{p}}$ is clearly not flat.

For (iii), one direction follows from Problem 7, and for the converse, if F is torsion free then since R is a principal entire ring, F is the direct limit of its finitely generated submodules which are free by III.7.3, hence flat (using Exercise 12 below).

[^0]Problem 9. Let M be an A-module. We say that M is faithfully flat if M is flat, and if the functor

$$
T_{M}: E \mapsto M \otimes_{A} E
$$

is faithful, that is $E \neq 0$ implies $M \otimes_{A} E \neq 0$. Prove that the following conditions are equivalent:
(i) M is faithfully flat;
(ii) M is flat, and if $u: F \rightarrow E$ is a homomorphism of A-modules, $u \neq 0$, then $T_{M}(u): M \otimes_{A} F \rightarrow M \otimes_{A} E$ is also nonzero;
(iii) M is flat, and for all maximal ideals \mathfrak{m} of A, we have $\mathfrak{m} M \neq M$; and
(iv) A sequence of A-modules $N^{\prime} \rightarrow N \rightarrow N^{\prime \prime}$ is exact if and only if the sequence tensored with M is exact.

Solution. First, we show (i) \Rightarrow (ii). Let E^{\prime} be the image of u. Since $u \neq 0$ we know $E^{\prime} \neq 0$. Then the image of $T_{M}(u)$ is $M \otimes_{A} E^{\prime}$ which is nonzero, since M is faithful.

For (ii) \Rightarrow (iii), take the nonzero homomorphism $u: A \rightarrow A / \mathfrak{m} A$; we have $T_{M}(u): M \rightarrow M / \mathfrak{m} M$, so $M / \mathfrak{m} M \neq 0$, i.e. $\mathfrak{m} M \neq M$.

Now we show (iii) \Rightarrow (i). Suppose that $E \neq 0$; let $x \in E$ be a nonzero element, and let \mathfrak{m} be a maximal ideal containing the annihilator of x; then we have an injection of R-modules

$$
x(R / \mathfrak{m}) \hookrightarrow E / \mathfrak{m} E
$$

(If $a x=0$ then a is in the annihilator of x.) Tensoring with M, we obtain

$$
x(R / \mathfrak{m}) \otimes M \hookrightarrow(E / \mathfrak{m} E) \otimes M
$$

which becomes

$$
x(M / \mathfrak{m} M) \hookrightarrow(E \otimes M) \otimes R / \mathfrak{m} .
$$

By (iii), $M / \mathfrak{m} M \neq 0$, so $E \otimes M \neq 0$.
To show (iv) $\Rightarrow(\mathrm{i})$, taking $N^{\prime}=0$ we see that M is flat; if $E \otimes M=0$ then $0 \otimes M \rightarrow E \otimes M \rightarrow 0 \otimes M$ is exact, so $0 \rightarrow E \rightarrow 0$ is exact, so $E=0$.

To conclude, we show that (i) \Rightarrow (iv). If M is flat, then $N^{\prime} \rightarrow N \rightarrow N^{\prime \prime}$ exact implies $N^{\prime} \otimes M \rightarrow N \otimes M \rightarrow N^{\prime \prime} \otimes M$ exact. Conversely, if

$$
N^{\prime} \otimes M \xrightarrow{f \otimes 1} N \otimes M \xrightarrow{g \otimes 1} N^{\prime \prime} \otimes M
$$

is exact, then $(\operatorname{img} g / \operatorname{ker} f) \otimes M=0$, so by (i) we have $\operatorname{img} g / \operatorname{ker} f=0$, i.e.

$$
N^{\prime} \xrightarrow{f} N \xrightarrow{g} N^{\prime \prime}
$$

is exact.

Problem 12. Show that the tensor product commutes with direct limits. In other words, if $\left\{E_{i}\right\}$ is a direct family of modules, and M is any module, then there is a natural isomorphism

$$
\xrightarrow{\lim }\left(E_{i} \otimes_{A} M\right) \cong\left(\underset{\longrightarrow}{\lim } E_{i}\right) \otimes_{A} M .
$$

Solution (sketch). Show that $\left(\underset{\longrightarrow}{\lim } E_{i}\right) \otimes_{A} M$ satisfies the universal property of the direct limit; this is clear on any finite level.

Problem *. Let $R=k[x, y]$ be the indicated polynomial ring in two variables over a field k. Show that the maximal ideal (x, y) of R is not flat over R.

Solution. Using Proposition 3.7, we note that it suffices to show that the multiplication map $\mathfrak{m} \otimes \mathfrak{m} \rightarrow \mathfrak{m}^{2}$ is not an isomorphism. This follows because

$$
x \otimes y-y \otimes x=x y-y x=0
$$

so the map even fails to be injective.
Note that $x \otimes y-y \otimes x \neq 0$, because there is a R-linear map

$$
\begin{aligned}
f: \mathfrak{m} \times \mathfrak{m} & \rightarrow k[x, y] /(x, y) \\
(a, b) & \mapsto(\partial a / \partial x)(\partial b / \partial y)
\end{aligned}
$$

with $f(x, y)=1 \neq 0=f(y, x)$.

[^0]: Date: February 13, 2003.
 XVI: 6-9, 12, *.

