
MATH 250B: COMMUTATIVE ALGEBRA
HOMEWORK #2

JOHN VOIGHT

Some solutions are omitted or sketched.

Problem XIII.25. Let a11, . . . , a1n be elements from a principal ideal ring, and
assume that they generate the unit ideal. Show that there exists a matrix (aij) with
this given first row, and whose determinant is equal to 1.

Solution. This problem is false for n = 1!
Let R be our principal ideal ring. Recall that we denote by gcd(x1, . . . , xn) any

element x such that (x) = (x1, . . . , xn); such an element is well-defined up to a unit
R∗.

We prove the result by induction, namely, we show: given a11, . . . , a1n, there
exists a matrix A = (aij) such that:

(i) A has the given first row;
(ii) det A = gcd(a1j); and
(iii) If bj is the minor obtained from the matrix by removing the first row and

jth column, then gcd(b1, . . . , bn) = 1.
First, the base case, n = 2. Given b1, b2 such that a11b1 + a12b2 = gcd(a11, a12),

we take the matrix

A =
(

a11 a12

−b2 b1

)
.

Note that gcd(b1, b2) = 1 by the same equation, for gcd(b1, b2) gcd(a11, a12) divides
both sides.

Now for the general case: Let gcd(a11, . . . , a1(n−1)) = g, and write gr + a1ns =
gcd(g, a1n), (as before gcd(r, s) = 1). By inductive assumption, there exists an
(n − 1) × (n − 1) matrix A = (aij) with first row a11, . . . , a1(n−1) with detA = g
and gcd(bj) = 1. Let b1c1 + · · ·+ bn−1cn−1 = 1; consider the matrix

a11 . . . a1(n−1) a1n

sc1 . . . scn−1 −r
a21 . . . a2(n−1) 0
...

. . .
...

...
a(n−1)1 . . . a(n−1)(n−1) 0

 .

Note A is obtained from this matrix by removing the second row and last column.
By expanding about the last column, we see that the determinant of this matrix is

a1n(sc1b1 + · · ·+ scn−1bn−1) + r detA = sa1n + rg = gcd(a11, . . . , a1n).
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This matrix has the given first row and the correct determinant. To show (iii), we
note that the minor obtained by removing the first row and last column is equal to
s, whereas the minor obtained by removing the first row and jth column is equal to
−rbj , and gcd(−rbj , s) = gcd(r, s) = 1, since gcd(bj) = 1 by inductive hypothesis.
This completes the proof.

Problem XIII.26. Let A be a commutative ring, and J = (x1, . . . , xr) an ideal.
Let cij ∈ A and let

yi =
r∑

j=1

cijxj .

Let J ′ = (y1, . . . , yr), and let D = det(cij). Show that DJ ⊂ J ′.

Solution. Let C̃ be the adjoint matrix so that CC̃ = DI. Note that

C̃

y1

...
yn

 = C̃C

x1

...
xn

 = D

x1

...
xn

 .

Thus each term Dxi =
∑

c̃ijyj , hence DJ ⊂ J ′.

Problem XIII.27. Let L be a free module over Z with basis e1, . . . , en. Let M be
a free submodule of the same rank, with basis u1, . . . , un. Let ui =

∑
cijej. Show

that the index (L : M) is given by the determinant:

(L : M) = |det(cij)|.

Solution. By Theorem III.7.8, there exists a basis f1, . . . , fn of L and integers
a1, . . . , an such that a1f1, . . . , anfn is a basis of M . Write fi =

∑
pijej and aifi =∑

qijuj ; then the matrix P = (pij) is a change of basis for L, hence invertible hence
det P ∈ Z∗ = {±1}; similarly, Q = (qij) has |detQ| = 1. Then

(L : M) = |a1 . . . an| = |det(QCP−1)| = |detC|.

Problem XIV.3. Let k be a commutative ring, and let M,M ′ be square n × n
matrices in k. Show that the characteristic polynomials of MM ′ and M ′M are
equal.

Solution. We prove this fact for “generic” matrices A,A′, from which the result
follows. Let F be the prime subfield of k, and consider the polynomial ring
R = F [xij , x

′
ij ] for 1 ≤ 1, j ≤ n. Let A = (xij), A′ = (x′ij) be matrices of in-

determinates, and let K be the field of fractions of R, namely, K = F (xij , x
′
ij).

The matrices M,M ′ are invertible over K, since det A,detA′ 6= 0 (they are homo-
geneous polynomials of degree n). Therefore over K, we have

det(tI −AA′) = det
(
A−1(tI −AA′)A

)
= det(tI −A′A)
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so the characteristic polynomials pAA′(t) = pA′A(t). But already pAA′(t), pA′A(t) ∈
R[t] (clear from the definition as a determinant); we have a map

R[t] → k[t]
xij 7→ mij

x′ij 7→ m′
ij

which sends pAA′(t) 7→ pMM ′(t) and pA′A(t) 7→ pM ′M (t), hence pMM ′(t) = pM ′M (t).

Problem XIV.6. Let A be a nilpotent endomorphism of a finite-dimensional vector
space E over the field k. Show that tr(A) = 0.

Solution. The minimal polynomial of A is of the form tr since Xm = 0 for some m.
Therefore the characteristic polynomial pA(t) = tn where n = dim E. Then tr A is
the coefficient of tn−1 in pA(t), namely, tr A = 0.

Problem XIV.8. Let E be a finite-dimensional vector space over a field k. Let
A ∈ Autk(E). Show that the following conditions are equivalent:

(a) A = I + N , with N nilpotent;
(b) There exists a basis of E such that the matrix of A with respect to this basis

has all its diagonal elements equal to 1 and all elements above the diagonal
equal to zero.

(c) All roots of the characteristic polynomial of A (in the algebraic closure of
k) are equal to 1.

Solution. If A = I + N , then by Exercise 9, there exists a basis of E such that N
is strictly upper triangular; let M give such a change of basis, i.e. let M−1NM be
strictly upper triangular. If we let P = P−1 be the matrix with all anti-diagonal
elements equal to 1 and all other elements zero, then P−1(M−1NM)P is strictly
lower triangular (P interchanges ith and (n− i)th rows and columns). Then

P−1M−1A(MP ) = I + (MP )−1N(MP )

so A in this basis has diagonal elements (given by the identity matrix) equal to one,
and all elements above the diagonal equal to zero. This shows (a) =⇒ (b).

The statement (b) =⇒ (c) is clear, since if we write A in this basis, A − tI is
lower triangular so det(A− tI) = (t− 1)n, the product of its diagonal elements.

Finally, to see that (c) =⇒ (a), we note that pA(t) = (t − 1)n, so pA(A) =
(A − I)n = 0. If we let N = A − I, so that A = I − N , then Nn = 0, i.e. N is
nilpotent.

Problem XIV.9. Let k be a field of characteristic 0 and let M be an n×n matrix
in k. Show that M is nilpotent if and only if tr(Mν) = 0 for 1 ≤ ν ≤ n.

Solution. If M is nilpotent, then Mν is also nilpotent, hence by Exercise 6 tr(Mν) =
0.

Conversely, suppose that tr(Mν) = 0. If λ1, . . . , λn ∈ k are the (not necessarily
distinct) eigenvalues of M , then λν

1 , . . . , λν
n are the eigenvalues of Mν (with the

same multiplicities), as if vi has Mvi = λvi, then

Mνvi = Mν−1(Mvi) = Mν−1(λivi) = · · · = λν
i vi.
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It suffices to show that λ1 = · · · = λn = 0, for then the characteristic polynomial
of M is pM (t) =

∏
(t− λi)n = tn = 0, i.e. M is nilpotent.

Therefore tr(Mν) =
∑

λν
i . It suffices to show that

∑
λν

i = 0 for 1 ≤ ν ≤ n
implies that λ1 = · · · = λn = 0. Without loss of generality, we may assume that all
λi 6= 0. Consider the Vandermonde matrix

V (λ1, . . . , λn) =

λ1 . . . λn

...
. . .

...
λn

1 . . . λn
n


Since

Λ

1
...
1

 =


∑

λi

...∑
λn

i

 =

0
...
0


we see that det Λ = 0. But this is a Vandermonde matrix (see after Proposition
XIII.4.10), hence

det Λ = λ1 . . . λn

∏
i<j

(xj − xi).

Therefore, say, λ1 = λ2, so the column vector (1,−1, 0, . . . , 0)t is in the nullspace
of Λ and is linearly independent of (1, . . . , 1)t, so the nullspace of Λ is at least of
dimension 2. This implies that all (n − 1) × (n − 1) minors of Λ must vanish, in
particular, the minor obtained by deleting the first column and row,

λ2 . . . λn detV (λ2, . . . , λn) = 0.

By induction, this implies that λ2 = · · · = λn = λ = λ1. Since k is characteristic
zero, the equation nλ = 0 implies λ = 0 as desired.

Problem XIV.13. Let E be a finite-dimensional vector space over a field k, and
let S ∈ Endk(E). We say that S is diagonalizable if there exists a basis of E
consisting of eigenvectors of S. The matrix of S with respect to this basis is then a
diagonal matrix.

(a) If S is diagonalizable, then its minimal polynomial over k is of type

q(t) =
m∏

i=1

(t− λi),

where λ1, . . . , λm are distinct elements of k.
(b) Conversely, if the minimal polynomial of S is of the preceding type, then S

is diagonalizable. [Hint: The space can be decomposed as a direct sum of
the subspaces Eλi annihilated by S − λi.]

(c) If S is diagonalizable, and if F is a subspace of E such that SF ⊂ F , show
that S is diagonalizble as an endomorphism of F , i.e. that F has a basis
consisting of eigenvectors of S.

(d) Let S, T be endomorphisms of E, and assume that S, T commute. Assume
that both S, T are diagonalizable. Show that they are simultaneously diag-
onalizable, i.e. there exists a basis of E consisting of eigenvectors for both
S and T . [Hint: If λ is an eigenvalue of S, and Eλ is the subspace of E
consisting of all vectors v such that Sv = λv, then TEλ ⊂ Eλ.]
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Solution (sketch). For (a), let λ1, . . . , λm be the distinct eigenvalues of S, and let vij

be a basis of eigenvectors of S with eigenvalues λi. Since already S−λiI annihilates
vij , we see that

∏
i(S−λiI) annihilates every vij , hence all of E, so

∏
i(S−λiI) = 0,

and therefore the minimal polynomial of S divides
∏

i(t− λi), hence is equal to it.
For (b), as in the hint, choose a basis vij for the subspace Eλi

; the matrix of S
in this basis will be diagonal, since it is diagonal (constant!) on each subspace.

For (c), choose a basis for F and extend it to one of E. The matrix for S,
since SF ⊂ F is block upper triangular; computing the minimal polynomial for S
restricted to F from this we see that it must be squarefree as it divides the minimal
polynomial of S.

For (d), let λ be an eigenvalue of S (such and eigenvalue exists by assumption
that S is diagonalizable). In the subspace Eλ = {v ∈ S : Sv = λv}, we see that

S(Tv) = T (Sv) = T (λv) = λ(Tv)

so TEλ ⊂ Eλ. The result now follows from part (c).

Problem XIV.15. Let E,F be finite-dimensional vector spaces over an alge-
braically closed field k, and let A : E → E and B : F → F be k-endomorphisms of
E,F , respectively. Let

PA(t) =
∏

(t− αi)ni , PB(t) =
∏

(t− βj)mj

be the factorizations of their respective characteristic polynomials into distinct linear
factors. Then

PA⊗B(t) =
∏
i,j

(t− αiβj)nimj .

[Hint: Decompose E into the direct sum of subspaces Ei, where Ei is the subspace of
E annihilated by some power of A−αi. Do the same for F , getting a decomposition
into a direct sum of subspaces Fj. Then show that some power of A ⊗ B − αiβj

annihilates Ei ⊗ Fj. Use the fact that E ⊗ F is the direct sum of the subspaces
Ei ⊗ Fj, and that dimk(Ei ⊗ Fj) = nimj.]

Solution (sketch). By the hint, it is enough to show that the characteristic poly-
nomial of A ⊗ B on Ei ⊗ Fj is (t − αiβj)nimj . By direct computation, the only
eigenvalue of A ⊗ B on Ei ⊗ Fj is αiβj . Since we are over an algebraically closed
field, this implies the claim.

Problem XIV.20.
(a) How many non-conjugate elements of GL2(C) are there with characteristic

polynomial t3(t + 1)2(t− 1)?
(b) How many with characteristic polynomial t3 − 1001t?

Solution. Zero and zero, because the degree of the characteristic polynomial is equal
to 2. What is up with this problem?

Problem XIV.23. Let E be a finite-dimensional vector space over an algebraically
closed field k. Let A,B be k-endomorphisms of E which commute, i.e. AB =
BA. Show that A and B have a common eigenvector. [Hint: Consider a subspace
consisting of all vectors having a fixed element of k as eigenvalue.]
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Solution. Let λ be an eigenvector of A (λ exists because k is algebraically closed),
and let Eλ = {v ∈ E : Av = λv}. Then for v ∈ Eλ,

A(Bv) = B(Av) = λBv

so BEλ ⊂ Eλ. This implies that B is well-defined as an endomorphism restricted
to Eλ, and therefore (over the algebraically closed field k) B has an eigenvector
w ∈ V , which by construction is also an eigenvector of A.


