MATH 250B: COMMUTATIVE ALGEBRA HOMEWORK \#1

JOHN VOIGHT

Some solutions are omitted or sketched.
Problem 4. Let A_{1}, \ldots, A_{r} be row vectors of dimension n over a field k. Let $X=\left(x_{1}, \ldots, x_{n}\right)$. Let $b_{1}, \ldots, b_{r} \in k$. By a system of linear equations in k one means a system of type

$$
A_{1} \cdot X=b_{1}, \ldots, A_{r} \cdot X=b_{r}
$$

If $b_{1}=\cdots=b_{r}=0$, one says the system is homogeneous. We call n the number of variables, and r the number of equations. A solution X of the homogeneous system is called trivial if $x_{i}=0, i=1, \ldots, n$.
(a) Show that a homogeneous system of r linear equations in n unknowns with $n>r$ always has a nontrivial solution.
(b) Let L be a system of homogeneous linear equations over a field k. Let k be a subfield of k^{\prime}. If L has a non-trivial solution in k^{\prime}, show that it has a non-trivial solution in k.

Solution. The matrix A with rows A_{i} defines a map $L_{A}: k^{n} \rightarrow k^{r}$ by $X \mapsto A \cdot X$. By SS2, if $W=\operatorname{ker} L_{A}$, then $\operatorname{dim} W+\operatorname{rk} A=n$. Since A has only r rows, it has (row) rank $\leq r$, so $\operatorname{dim} W \geq n-r>0$, so the system has a nontrivial solution. This proves (a).

For (b), let $x=\left(x_{1}, \ldots, x_{n}\right) \in\left(k^{\prime}\right)^{n}$ be a solution to $A x=0$. Consider k^{\prime} as a vector space over k, and let V be the k-subvector space of k^{\prime} generated by the x_{i}. (Note that even if k^{\prime} is infinite-dimensional over k, V is necessarily finite dimensional.) Let v_{1}, \ldots, v_{m} be any basis of V and write $x_{i}=\sum_{j} c_{i j} v_{j}$.

We claim that for each $j, c_{j}=\left(c_{i j}\right)_{i} \in k^{n}$ is a solution; since the x_{i} were not all zero, at least one c_{j} is not zero. The claim follows from the calculation:
$A x=A\left(\begin{array}{c}\sum_{j} c_{1 j} v_{j} \\ \vdots \\ \sum_{j} c_{n j} v_{j}\end{array}\right)=A\left(\begin{array}{c}c_{11} \\ \vdots \\ c_{n 1}\end{array}\right) v_{1}+\cdots+A\left(\begin{array}{c}c_{1 m} \\ \vdots \\ c_{n m}\end{array}\right) v_{m}=\left(A c_{1}\right) v_{1}+\cdots+\left(A c_{m}\right) v_{m}$.
Since the v_{i} are linearly independent, $A c_{j}=0$ for all j.

Problem 5. Let M be an $n \times n$ matrix over a field k. Assume that $\operatorname{tr}(M X)=0$ for all $n \times n$ matrices X in k. Show that $M=O$.

[^0]Solution. Denote by $E_{i j}$ the matrix whose only nonzero entry is $e_{i j}=1$, and let $M=\left(m_{i j}\right)_{i, j}$. Then since

$$
\operatorname{tr}(M X)=\sum_{i=1}^{n} \sum_{j=1}^{n} m_{i j} x_{j i}
$$

we see that $M E_{i j}=m_{j i}$. Hence if $\operatorname{tr}\left(M E_{i j}\right)=0$ for all i, j, then $M=O$.

Problem 6. Let S be a set of $n \times n$ matrices over a field k. Show that there exists a column vector $X \neq 0$ of dimension n in k such that $M X=X$ for all $M \in S$ if and only if there exists such a vector in some extension field k^{\prime} of k.
Solution. Since $k \subset k^{\prime}$, one direction is trivial. For the other, note that if $M X^{\prime}=X^{\prime}$ for all $M \in S$ and $X^{\prime} \in\left(k^{\prime}\right)^{n}$, then $(M-I) X^{\prime}=0$ for all $M \in S$. By the solution to 4(b), choosing a basis for the components for X^{\prime} over k, we obtain an element $X \in k^{n}$ such that $(M-I) X=0$ for all $M \in S$.

Problem 8. Let N be a strictly upper triangular $n \times n$ matrix, that is $N=\left(a_{i j}\right)$ and $a_{i j}=0$ if $i \geq j$. Show that $N^{n}=0$.

Solution. Treating T as an indeterminant, note that $\operatorname{det}(N-T I)=(-T)^{n}$, since $N-T I$ is (not strictly) upper triangular with $-T$ along the diagonal. By the Cayley-Hamilton theorem, N satisfies its characteristic polynomial $T^{n}=0$, so $N^{n}=0$.

Problem 9. Let E be a vector space over k of dimension n. Let $T: E \rightarrow E$ be a linear map such that T is nilpotent, that is $T^{m}=0$ for some positive integer m. Show that there exists a basis of E over k such that the matrix of T with respect to this basis is strictly upper triangular.

Solution. We construct such a basis inductively. Since T is nilpotent, there exists a v_{1} such that $T v_{1}=0\left(\right.$ e.g. since $\left.(\operatorname{det} T)^{m}=\operatorname{det} T^{m}=0\right)$.

Now for $i=1, \ldots, n-1$, given linearly independent vectors v_{1}, \ldots, v_{i}, we claim there exists a vector v_{i+1} independent of the v_{j} such that $T v_{i+1} \in \operatorname{span}\left\{v_{1}, \ldots, v_{i}\right\}$. Otherwise, $T v \notin \operatorname{span}\left\{v_{j}\right\}$ for all $v \notin \operatorname{span}\left\{v_{j}\right\}$, and this contradicts $T^{m} v=0$.

This gives a basis v_{1}, \ldots, v_{n} of E. In this basis, the i th column of T has $t_{i j}=0$ for $i \geq j$ since $T v_{i+1} \in \operatorname{span}\left\{v_{1}, \ldots, v_{i}\right\}$, so T is strictly upper triangular.

Problem 11. Let R be the set of all upper triangular $n \times n$ matrices $\left(a_{i j}\right)$ with $a_{i j}$ in some field k, so $a_{i j}=0$ if $i>j$. Let J be the set of all strictly upper triangular matrices. Show that J is a two-sided ideal in R. How would you describe the factor ring R / J ?
Solution. Clearly, J is an additive subgroup of R. If $M=\left(m_{i j}\right) \in J$ and $A=$ $\left(a_{i j}\right) \in R$, writing $A M=B$ we see that

$$
b_{i j}=\sum_{k} a_{i k} m_{k j} .
$$

For $i \geq j, a_{i 1}=\cdots=a_{i(i-1)}=0$ while $m_{i j}=m_{(i+1) j}=\cdots=m_{n j}=0$, so $b_{i j}=0$. A similar result holds for $M A$, so J is a two-sided ideal.

Now $R / J \cong k^{n}$ as rings. Clearly, any matrix $A \in R$ can be written $A=D+M$ where D is a diagonal matrix and $M \in J$; the ring of diagonal matrices is isomorphic to k^{n} because addition and multiplication are componentwise.

Problem 14. Let F be any field. Let D be the subgroup of diagonal matrices in $G L_{n}(F)$. Let N be the normalizer of D in $G L_{n}(F)$. Show that N / D is isomorphic to the symmetric group on n elements.
Solution (sketch). The group N is the group of matrices with exactly one nonzero element in each row and column. Every such matrix can be written as a permutation matrix (a matrix of zeros and ones contained in N) and a diagonal matrix, so $N / D \cong S_{n}$ by the action of the permutation matrix on the standard basis vectors.

Problem 16. Let F be a finite field with q elements. Show that the order of $S L_{n}(F)$ is

$$
q^{n(n-1) / 2} \prod_{i=2} n\left(q^{i}-1\right)
$$

and that the order of $P S L_{n}(F)$ is

$$
\frac{1}{d} q^{n(n-1) / 2} \prod_{i=2} n\left(q^{i}-1\right)
$$

Solution. The determinant map det : $G L_{n}(F) \rightarrow F^{*}$ is clearly surjective, and has kernel $S L_{n}(F)$, so $S L_{n}(F) \cong G L_{n}(F) / F^{*}$. Hence $\# S L_{n}(F)=\# G L_{n}(F) /(q-1)$, which is the result.

We know that $P S L_{n}(F)=S L_{n}(F) / Z$, where Z is the group of scalar matrices which are nth roots of unity (see after Theorem 9.2). Since F^{*} is cyclic, $\# \mu_{n}\left(F^{*}\right)=$ $\operatorname{gcd}(n, q-1)=d$. This gives the second statement.

Problem 17. Let F be a finite field with q elements. Show that the group of all upper triangular matrices with 1 along the diagonal is a Sylow subgroup of $G L_{n}(F)$ and $S L_{n}(F)$.
Solution. We know from Exercise 12 that this is a subgroup. It has order $q^{n(n-1) / 2}$, since we can choose the strictly upper triangular elements arbitrarily from F. If $q=p^{m}$, then we see it is a p-subgroup; by Exercise 15, this is the largest power of p that divides $\# G L_{n}(F)$ (and $\# S L_{n}(F)$), so it is a p-Sylow subgroup as well.

[^0]: Date: January 30, 2003.
 XIII: 4-6, 8-9, 11-18.

