MATH 250B: COMMUTATIVE ALGEBRA HOMEWORK #1

JOHN VOIGHT

Some solutions are omitted or sketched.

Problem 4. Let A_1, \ldots, A_r be row vectors of dimension n over a field k. Let $X = (x_1, \ldots, x_n)$. Let $b_1, \ldots, b_r \in k$. By a system of linear equations in k one means a system of type

$$A_1 \cdot X = b_1, \ \dots, \ A_r \cdot X = b_r.$$

If $b_1 = \cdots = b_r = 0$, one says the system is homogeneous. We call n the number of variables, and r the number of equations. A solution X of the homogeneous system is called trivial if $x_i = 0, i = 1, ..., n$.

- (a) Show that a homogeneous system of r linear equations in n unknowns with n > r always has a nontrivial solution.
- (b) Let L be a system of homogeneous linear equations over a field k. Let k be a subfield of k'. If L has a non-trivial solution in k', show that it has a non-trivial solution in k.

Solution. The matrix A with rows A_i defines a map $L_A : k^n \to k^r$ by $X \mapsto A \cdot X$. By SS2, if $W = \ker L_A$, then dim $W + \operatorname{rk} A = n$. Since A has only r rows, it has (row) rank $\leq r$, so dim $W \geq n - r > 0$, so the system has a nontrivial solution. This proves (a).

For (b), let $x = (x_1, \ldots, x_n) \in (k')^n$ be a solution to Ax = 0. Consider k' as a vector space over k, and let V be the k-subvector space of k' generated by the x_i . (Note that even if k' is infinite-dimensional over k, V is necessarily finite dimensional.) Let v_1, \ldots, v_m be any basis of V and write $x_i = \sum_j c_{ij} v_j$.

We claim that for each $j, c_j = (c_{ij})_i \in k^n$ is a solution; since the x_i were not all zero, at least one c_j is not zero. The claim follows from the calculation:

$$Ax = A\begin{pmatrix} \sum_{j} c_{1j} v_{j} \\ \vdots \\ \sum_{j} c_{nj} v_{j} \end{pmatrix} = A\begin{pmatrix} c_{11} \\ \vdots \\ c_{n1} \end{pmatrix} v_{1} + \dots + A\begin{pmatrix} c_{1m} \\ \vdots \\ c_{nm} \end{pmatrix} v_{m} = (Ac_{1})v_{1} + \dots + (Ac_{m})v_{m}.$$

Since the v_i are linearly independent, $Ac_j = 0$ for all j.

Problem 5. Let M be an $n \times n$ matrix over a field k. Assume that tr(MX) = 0 for all $n \times n$ matrices X in k. Show that M = O.

Date: January 30, 2003.

XIII: 4-6, 8-9, 11-18.

Solution. Denote by E_{ij} the matrix whose only nonzero entry is $e_{ij} = 1$, and let $M = (m_{ij})_{i,j}$. Then since

$$\operatorname{tr}(MX) = \sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} x_{ji}$$

we see that $ME_{ij} = m_{ji}$. Hence if $tr(ME_{ij}) = 0$ for all i, j, then M = O.

Problem 6. Let S be a set of $n \times n$ matrices over a field k. Show that there exists a column vector $X \neq 0$ of dimension n in k such that MX = X for all $M \in S$ if and only if there exists such a vector in some extension field k' of k.

Solution. Since $k \subset k'$, one direction is trivial. For the other, note that if MX' = X' for all $M \in S$ and $X' \in (k')^n$, then (M - I)X' = 0 for all $M \in S$. By the solution to 4(b), choosing a basis for the components for X' over k, we obtain an element $X \in k^n$ such that (M - I)X = 0 for all $M \in S$.

Problem 8. Let N be a strictly upper triangular $n \times n$ matrix, that is $N = (a_{ij})$ and $a_{ij} = 0$ if $i \ge j$. Show that $N^n = 0$.

Solution. Treating T as an indeterminant, note that $\det(N - TI) = (-T)^n$, since N - TI is (not strictly) upper triangular with -T along the diagonal. By the Cayley-Hamilton theorem, N satisfies its characteristic polynomial $T^n = 0$, so $N^n = 0$.

Problem 9. Let E be a vector space over k of dimension n. Let $T : E \to E$ be a linear map such that T is nilpotent, that is $T^m = 0$ for some positive integer m. Show that there exists a basis of E over k such that the matrix of T with respect to this basis is strictly upper triangular.

Solution. We construct such a basis inductively. Since T is nilpotent, there exists a v_1 such that $Tv_1 = 0$ (e.g. since $(\det T)^m = \det T^m = 0$).

Now for i = 1, ..., n - 1, given linearly independent vectors $v_1, ..., v_i$, we claim there exists a vector v_{i+1} independent of the v_j such that $Tv_{i+1} \in \text{span}\{v_1, ..., v_i\}$. Otherwise, $Tv \notin \text{span}\{v_j\}$ for all $v \notin \text{span}\{v_j\}$, and this contradicts $T^m v = 0$.

This gives a basis v_1, \ldots, v_n of E. In this basis, the *i*th column of T has $t_{ij} = 0$ for $i \ge j$ since $Tv_{i+1} \in \text{span}\{v_1, \ldots, v_i\}$, so T is strictly upper triangular.

Problem 11. Let R be the set of all upper triangular $n \times n$ matrices (a_{ij}) with a_{ij} in some field k, so $a_{ij} = 0$ if i > j. Let J be the set of all strictly upper triangular matrices. Show that J is a two-sided ideal in R. How would you describe the factor ring R/J?

Solution. Clearly, J is an additive subgroup of R. If $M = (m_{ij}) \in J$ and $A = (a_{ij}) \in R$, writing AM = B we see that

$$b_{ij} = \sum_{k} a_{ik} m_{kj}.$$

For $i \ge j$, $a_{i1} = \cdots = a_{i(i-1)} = 0$ while $m_{ij} = m_{(i+1)j} = \cdots = m_{nj} = 0$, so $b_{ij} = 0$. A similar result holds for MA, so J is a two-sided ideal. Now $R/J \cong k^n$ as rings. Clearly, any matrix $A \in R$ can be written A = D + Mwhere D is a diagonal matrix and $M \in J$; the ring of diagonal matrices is isomorphic to k^n because addition and multiplication are componentwise.

Problem 14. Let F be any field. Let D be the subgroup of diagonal matrices in $GL_n(F)$. Let N be the normalizer of D in $GL_n(F)$. Show that N/D is isomorphic to the symmetric group on n elements.

Solution (sketch). The group N is the group of matrices with exactly one nonzero element in each row and column. Every such matrix can be written as a permutation matrix (a matrix of zeros and ones contained in N) and a diagonal matrix, so $N/D \cong S_n$ by the action of the permutation matrix on the standard basis vectors.

Problem 16. Let F be a finite field with q elements. Show that the order of $SL_n(F)$ is

$$q^{n(n-1)/2} \prod_{i=2} n(q^i - 1)$$

and that the order of $PSL_n(F)$ is

$$\frac{1}{d}q^{n(n-1)/2}\prod_{i=2}n(q^i-1).$$

Solution. The determinant map det : $GL_n(F) \to F^*$ is clearly surjective, and has kernel $SL_n(F)$, so $SL_n(F) \cong GL_n(F)/F^*$. Hence $\#SL_n(F) = \#GL_n(F)/(q-1)$, which is the result.

We know that $PSL_n(F) = SL_n(F)/Z$, where Z is the group of scalar matrices which are nth roots of unity (see after Theorem 9.2). Since F^* is cyclic, $\#\mu_n(F^*) = \gcd(n, q-1) = d$. This gives the second statement.

Problem 17. Let F be a finite field with q elements. Show that the group of all upper triangular matrices with 1 along the diagonal is a Sylow subgroup of $GL_n(F)$ and $SL_n(F)$.

Solution. We know from Exercise 12 that this is a subgroup. It has order $q^{n(n-1)/2}$, since we can choose the strictly upper triangular elements arbitrarily from F. If $q = p^m$, then we see it is a *p*-subgroup; by Exercise 15, this is the largest power of p that divides $\#GL_n(F)$ (and $\#SL_n(F)$), so it is a *p*-Sylow subgroup as well.