MATH 195: CRYPTOGRAPHY HOMEWORK #14

Problem 6.28. Let $E: y^2 = x^3 + x^2 + 1$ over \mathbb{F}_3 .

(a) Determine all points of $E(\mathbb{F}_3)$.

(b) Make a group table for $E(\mathbb{F}_3)$.

Problem 6.29. Let E be an elliptic curve over \mathbb{F}_q , and define t_0, t_1, t_2, \ldots by $t_0 = 2, t_1 = q + 1 - \#E(\mathbb{F}_q)$, and

$$t_n = t_1 \cdot t_{n-1} - q t_{n-2},$$

for $n \geq 2$. Prove that for all n one has

$$#E(\mathbb{F}_{q^n}) = q^n + 1 - t_n$$

[Use the theorem stated in class.]

Problem 6.30. Let $E: y^2 = x^3 - x + 1$ over \mathbb{F}_3 .

- (a) Determine $\#E(\mathbb{F}_3)$.
- (b) Prove: $E(\mathbb{F}_3) = E(\mathbb{F}_9)$.
- (c) Compute $\#E(\mathbb{F}_{27})$ and $\#E(\mathbb{F}_{81})$.

Problem 6.31. Alice and Bob do a Diffie-Hellman key exchange using the group $E(\mathbb{F}_3)$, where $E: y^2 = x^3 - x + 1$, with g = (1, 1). They use secret exponents a = 2 and b = 3. What is the secret common key that they exchange?

Date: May 7, 2002. 6.28, 6.29, 6.30, 6.31.