MATH 195: CRYPTOGRAPHY HOMEWORK \#14

Problem 6.28. Let $E: y^{2}=x^{3}+x^{2}+1$ over \mathbb{F}_{3}.
(a) Determine all points of $E\left(\mathbb{F}_{3}\right)$.
(b) Make a group table for $E\left(\mathbb{F}_{3}\right)$.

Problem 6.29. Let E be an elliptic curve over \mathbb{F}_{q}, and define $t_{0}, t_{1}, t_{2}, \ldots$ by $t_{0}=2, t_{1}=q+1-\# E\left(\mathbb{F}_{q}\right)$, and

$$
t_{n}=t_{1} \cdot t_{n-1}-q t_{n-2},
$$

for $n \geq 2$. Prove that for all n one has

$$
\# E\left(\mathbb{F}_{q^{n}}\right)=q^{n}+1-t_{n} .
$$

[Use the theorem stated in class.]

Problem 6.30. Let $E: y^{2}=x^{3}-x+1$ over \mathbb{F}_{3}.
(a) Determine $\# E\left(\mathbb{F}_{3}\right)$.
(b) Prove: $E\left(\mathbb{F}_{3}\right)=E\left(\mathbb{F}_{9}\right)$.
(c) Compute $\# E\left(\mathbb{F}_{27}\right)$ and $\# E\left(\mathbb{F}_{81}\right)$.

Problem 6.31. Alice and Bob do a Diffie-Hellman key exchange using the group $E\left(\mathbb{F}_{3}\right)$, where $E: y^{2}=x^{3}-x+1$, with $g=(1,1)$. They use secret exponents $a=2$ and $b=3$. What is the secret common key that they exchange?

[^0]
[^0]: Date: May 7, 2002.
 6.28, 6.29, 6.30, 6.31.

