MATH 195: CRYPTOGRAPHY HOMEWORK #12

Problem 6.14. Consider a Diffie-Hellman scheme with a common prime q = 11and a primitive root $\alpha = 2$.

- (a) If user A has public key $Y_A = 9$, what is A's private key X_A ?
- (b) If user B has public key $Y_B = 3$, what is the shared secret key K?

Problem 7.17. Given 2 as a primitive root of 29, construct a table of indices, and use it to solve the following congruences:

- (a) $17x^2 \equiv 10 \pmod{29};$
- (b) $x^2 4x 16 \equiv 0 \pmod{29};$ (c) $x^7 \equiv 17 \pmod{29}.$

Problem 6.25. Prove that $\mathbb{F}_9 = \mathbb{F}_3[X]/(X^2+1)$ is a field of 9 elements, determine $\operatorname{ord}(g)$ for all $g \in \mathbb{F}_9^*$, and find a primitive root for \mathbb{F}_9 .

Problem 6.26. Let p be a prime number for which $2^p - 1$ is prime $(q = 2^p - 1)$ is called a Mersenne prime), and let $f \in \mathbb{F}_2[X]$ be irreducible of degree p. Let \mathbb{F}_{2^p} be the field $\mathbb{F}_2[X]/(f)$. Prove: X is a primitive root for \mathbb{F}_{2^p} , i.e. $\langle X \rangle = \mathbb{F}_{2^p}^*$.

Date: April 23, 2002. 6.14, 7.17, 6.25, 6.26.