MATH 195: CRYPTOGRAPHY
 HOMEWORK \#11

Problem R4. Let $c_{0}, c_{1}, c_{2}, c_{3} \in \mathbb{F}_{256}$ be such that $c_{0}+c_{1}+c_{2}+c_{3}=1$ and put

$$
c=c_{0}+c_{1} Y+c_{2} Y^{2}+c_{3} Y^{3} \in \mathbb{F}_{256}[Y] .
$$

Prove:
(a) $c \equiv 1(\bmod Y+1)$.
(b) $c^{4} \equiv 1\left(\bmod Y^{4}+1\right)$.
(c) The inverse of $\left(c \bmod Y^{4}+1\right)$ equals

$$
\begin{aligned}
c_{0}\left(c_{0}^{2}\right. & \left.+c_{2}^{2}\right)+c_{2}\left(c_{1}^{2}+c_{3}^{2}\right)+\left(c_{1}\left(c_{0}^{2}+c_{2}^{2}\right)+c_{3}\left(c_{1}^{2}+c_{3}^{2}\right)\right) Y \\
& +\left(c_{2}\left(c_{0}^{2}+c_{2}^{2}\right)+c_{0}\left(c_{1}^{2}+c_{3}^{2}\right)\right) Y^{2}+\left(c_{3}\left(c_{0}^{2}+c_{2}^{2}\right)+c_{1}\left(c_{1}^{2}+c_{3}^{2}\right)\right) Y^{3}
\end{aligned}
$$

Problem R5. Recall that we define the map

$$
\begin{aligned}
M: \mathbb{F}_{256}^{4} & \rightarrow \mathbb{F}_{256}^{4} \\
M(g) & \equiv c \cdot g \quad\left(\bmod Y^{4}+1\right)
\end{aligned}
$$

where we identify the word space \mathbb{F}_{256}^{4} with the set of polynomials

$$
\begin{aligned}
\mathbb{F}_{256}^{4} & =\left\{g \in \mathbb{F}_{256}[Y]: \operatorname{deg} g<4\right\} \\
\left(a_{0}, a_{1}, a_{2}, a_{3}\right) & =a_{0}+a_{1} Y+a_{2} Y^{2}+a_{3} Y^{3}
\end{aligned}
$$

Here we let $c \in \mathbb{F}_{256}^{4}$ be

$$
c=(X, 1,1, X+1)=X+Y+Y^{2}+(X+1) Y^{3}
$$

where

$$
\mathbb{F}_{256}=\mathbb{F}_{2}[X] /\left(X^{8}+X^{4}+X^{3}+X+1\right) .
$$

Prove that M^{4} is the identity map on the set of words, and that $M^{-1}=M^{3}$ is given by

$$
M^{-1}(g) \equiv d \cdot g \quad\left(\bmod Y^{4}+1\right)
$$

for all words g, where

$$
d=\left(X^{3}+X^{2}+X\right)+\left(X^{3}+1\right) Y+\left(X^{3}+X^{2}+1\right) Y^{2}+\left(X^{3}+X+1\right) Y^{3} .
$$

[Hint: Do problem $R 4$ before trying this problem.]

Problem R6. Find all words $w \in \mathbb{F}_{256}^{4}$ with $M(w)=w$. Find a pair of words v, w with

$$
M(v)=w, \quad M(w)=v
$$

where $w \neq v$.

Date: April 16, 2002.
R4, R5, R6.

