MATH 195: CRYPTOGRAPHY HOMEWORK #10

Problem R1. Let k be a finite field, #k = q, and let k[X] be the ring of polynomials with coefficients in k. For $f = \sum_{i=0}^{n} c_i X^i \in k[X]$ and $a \in k$, write f(a) for the element $\sum_{i=0}^{n} c_i a^i$ of k.

(a) Let $b \in k$ and define $f = 1 - (X - b)^{q-1}$. Prove:

$$f(a) = \begin{cases} 0, & a \in k, a \neq b; \\ 1, & a = b. \end{cases}$$

(b) Prove that there are precisely q^q different maps $g: k \to k$ and that for each of them there is a unique polynomial $f \in k[X]$ of degree $\langle q \rangle$ such that for all $a \in k$ one has g(a) = f(a).

Problem R2. Refer to the notation in the notes on the Rijndael cipher from Tuesday, April 2.

(a) Prove: $\tau_s^2 = \operatorname{id}_{\mathcal{S}} and \tau_s^{-1} = \tau_s \text{ for all } s \in \mathcal{S}.$ (b) Prove $\sigma^4 = \operatorname{id}_{\mathcal{S}} and \sigma^{-1} = \sigma^3.$

Problem R3.

- (a) Prove: $\beta \sigma = \sigma \beta$ independently of the map $B : \mathbb{F}_{256} \to \mathbb{F}_{256}$ used to define β.
- (b) Prove: $\mu \tau_s = \tau_{\mu(s)} \mu$ for all $s \in S$ independently of the linear function $M: \mathbb{F}_{256}^4 \to \mathbb{F}_{256}^4$ used to define μ .

Date: April 9, 2002. R1, R2.