MATH 195: CRYPTOGRAPHY HOMEWORK \#10

Problem R1. Let k be a finite field, $\# k=q$, and let $k[X]$ be the ring of polynomials with coefficients in k. For $f=\sum_{i=0}^{n} c_{i} X^{i} \in k[X]$ and $a \in k$, write $f(a)$ for the element $\sum_{i=0}^{n} c_{i} a^{i}$ of k.
(a) Let $b \in k$ and define $f=1-(X-b)^{q-1}$. Prove:

$$
f(a)= \begin{cases}0, & a \in k, a \neq b \\ 1, & a=b\end{cases}
$$

(b) Prove that there are precisely q^{q} different maps $g: k \rightarrow k$ and that for each of them there is a unique polynomial $f \in k[X]$ of degree $<q$ such that for all $a \in k$ one has $g(a)=f(a)$.

Problem R2. Refer to the notation in the notes on the Rijndael cipher from Tuesday, April 2.
(a) Prove: $\tau_{s}^{2}=\operatorname{id}_{\mathcal{S}}$ and $\tau_{s}^{-1}=\tau_{s}$ for all $s \in \mathcal{S}$.
(b) Prove $\sigma^{4}=\mathrm{id}_{\mathcal{S}}$ and $\sigma^{-1}=\sigma^{3}$.

Problem R3

(a) Prove: $\beta \sigma=\sigma \beta$ independently of the map $B: \mathbb{F}_{256} \rightarrow \mathbb{F}_{256}$ used to define β.
(b) Prove: $\mu \tau_{s}=\tau_{\mu(s)} \mu$ for all $s \in \mathcal{S}$ independently of the linear function $M: \mathbb{F}_{256}^{4} \rightarrow \mathbb{F}_{256}^{4}$ used to define μ.

[^0]
[^0]: Date: April 9, 2002.
 R1, R2.

