MATH 195: CRYPTOGRAPHY HOMEWORK #9

Problem F5. Verify that

$$X^8 + X^4 + X^3 + X + 1$$

is irreducible in $\mathbb{F}_2[X]$.

Problem F6. Put $f = X^8 + X^4 + X^3 + X + 1 \in \mathbb{F}_2[X]$, and let $a = 00001100 = X^3 + X^2 \in \mathbb{F}_2[X]/(f)$. Compute a^5 . Can you find an explicit embedding of

$$\mathbb{F}_2[X]/(X^4 + X^3 + X^2 + X + 1)$$

as a subfield in $\mathbb{F}_2[X]/(f)$?

Problem F7. Let p be prime. Prove that in $\mathbb{F}_p[X]/(X^p - X - 1)$ one has $X^{p^i} = X + (i \mod p) = \underbrace{00 \dots 00}_{p-2} 1(i \mod p)$

for i any positive integer. Deduce that $X^p - X - 1$ is irreducible in $\mathbb{F}_p[X]$.

Date: April 2, 2002. F5, F6, F7.