MATH 195: CRYPTOGRAPHY HOMEWORK \#9

Problem F5. Verify that

$$
X^{8}+X^{4}+X^{3}+X+1
$$

is irreducible in $\mathbb{F}_{2}[X]$.

Problem F6. Put $f=X^{8}+X^{4}+X^{3}+X+1 \in \mathbb{F}_{2}[X]$, and let

$$
a=00001100=X^{3}+X^{2} \in \mathbb{F}_{2}[X] /(f)
$$

Compute a^{5}. Can you find an explicit embedding of

$$
\mathbb{F}_{2}[X] /\left(X^{4}+X^{3}+X^{2}+X+1\right)
$$

as a subfield in $\mathbb{F}_{2}[X] /(f)$?

Problem F7. Let p be prime. Prove that in $\mathbb{F}_{p}[X] /\left(X^{p}-X-1\right)$ one has

$$
X^{p^{i}}=X+(i \bmod p)=\underbrace{00 \ldots 00}_{p-2} 1(i \bmod p)
$$

for i any positive integer. Deduce that $X^{p}-X-1$ is irreducible in $\mathbb{F}_{p}[X]$.

Date: April 2, 2002.
F5, F6, F7.

