MATH 195: CRYPTOGRAPHY HOMEWORK \#8

Problem F1. We let

$$
a_{n}(p)=\left\{a_{n}(p)=\#\left\{f \in \mathbb{F}_{p}[X]: \operatorname{deg} f=n, f \text { monic irreducible }\right\} .\right.
$$

In class it was shown that $a_{2}(p)=\left(p^{2}-p\right) / 2$. Prove in the same way that $a_{3}(p)=$ $\left(p^{3}-p\right) / 3$.

Problem F2. Find all monic irreducible polynomials of degree 2 in $\mathbb{F}_{3}[X]$ and of degree 4 in $\mathbb{F}_{2}[X]$.

Problem F3. Compute $a_{n}(2)$ for $n=1, \ldots, 10$.

Problem F4. Prove that $X^{3}-X-1$ is irreducible in $\mathbb{F}_{3}[X]$ and deduce that

$$
\mathbb{F}_{3}[X] /\left(X^{3}-X-1\right)
$$

is a field. Recall that we define

$$
\mathbb{F}_{p}[X] /(f(X))
$$

to be the set of polynomials of degree $<\operatorname{deg} f$ in $\mathbb{F}_{p}[X]$ with the usual addition and multiplication after taking the remainder on division by $f(X)$.

Compute the inverse of X^{2} and of $X^{2}+1$ in $\mathbb{F}_{3}[X] /\left(X^{3}-X-1\right)$.

[^0]
[^0]: Date: March 19, 2002.
 F1, F2, F3, F4; Updated Friday, March 15, 2002.

