MATH 195: CRYPTOGRAPHY HOMEWORK #8

Problem F1. We let

 $a_n(p) = \{a_n(p) = \#\{f \in \mathbb{F}_p[X] : \deg f = n, f \text{ monic irreducible}\}.$ In class it was shown that $a_2(p) = (p^2 - p)/2$. Prove in the same way that $a_3(p) = (p^3 - p)/3$.

Problem F2. Find all monic irreducible polynomials of degree 2 in $\mathbb{F}_3[X]$ and of degree 4 in $\mathbb{F}_2[X]$.

Problem F3. Compute $a_n(2)$ for $n = 1, \ldots, 10$.

Problem F4. Prove that $X^3 - X - 1$ is irreducible in $\mathbb{F}_3[X]$ and deduce that $\mathbb{F}_3[X]/(X^3 - X - 1)$

is a field. Recall that we define

 $\mathbb{F}_p[X]/(f(X))$

to be the set of polynomials of degree $< \deg f$ in $\mathbb{F}_p[X]$ with the usual addition and multiplication after taking the remainder on division by f(X). Compute the inverse of X^2 and of $X^2 + 1$ in $\mathbb{F}_3[X]/(X^3 - X - 1)$.

Date: March 19, 2002.

F1, F2, F3, F4; Updated Friday, March 15, 2002.