## MATH 195: CRYPTOGRAPHY HOMEWORK \#7

Problem 6.22. A Carmichael number is an integer $n>1$ that is not prime with the property that for all $a \in \mathbb{Z}, a^{n} \equiv a(\bmod n)$. Prove that $561,1105,1729$ are Carmichael numbers. [Hint: Look at the proof of $a^{e d} \equiv a(\bmod n), n=p q$, in the $R S A$-scheme. You may use the prime factorization of these numbers.]

Problem 6.23. Show that 'in practice' Carmichael numbers are easy to factor into primes. Illustrate the method on one of 561,1105, 1729.

Problem 6.24. Let $n$ be an RSA modulus, $e_{1}$ an encryption exponent, $d_{1}$ the corresponding decryption exponent, and $e_{2}$ a second encryption exponent. Exhibit a fast and certain algorithm that determines a decryption exponent $d_{2}$ (not using random choices, or the factorization of $n$, or exponentiation modulo $n$ ). Illustrate your algorithm on $n=119, e_{1}=23, d_{1}=23, e_{2}=7$ and $n=119, e_{1}=23$, $d_{1}=23, e_{2}=11$.

[^0]
[^0]:    Date: March 12, 2002.
    6.22, 6.23, 6.24.

