MATH 195: CRYPTOGRAPHY HOMEWORK #7

Problem 6.22. A Carmichael number is an integer n > 1 that is not prime with the property that for all $a \in \mathbb{Z}$, $a^n \equiv a \pmod{n}$. Prove that 561,1105,1729 are Carmichael numbers. [Hint: Look at the proof of $a^{ed} \equiv a \pmod{n}$, n = pq, in the RSA-scheme. You may use the prime factorization of these numbers.]

Problem 6.23. Show that 'in practice' Carmichael numbers are easy to factor into primes. Illustrate the method on one of 561, 1105, 1729.

Problem 6.24. Let n be an RSA modulus, e_1 an encryption exponent, d_1 the corresponding decryption exponent, and e_2 a second encryption exponent. Exhibit a fast and certain algorithm that determines a decryption exponent d_2 (not using random choices, or the factorization of n, or exponentiation modulo n). Illustrate your algorithm on n = 119, $e_1 = 23$, $d_1 = 23$, $e_2 = 7$ and n = 119, $e_1 = 23$, $d_1 = 23$, $e_2 = 11$.

Date: March 12, 2002. 6.22, 6.23, 6.24.