MATH 195: CRYPTOGRAPHY HOMEWORK #5

Problem 3.15. In SDES, a key $K = (k_1, \ldots, k_{10}) \in \mathbb{F}_2^{10} = (\mathbb{Z}/2\mathbb{Z})^{10}$ gives rise to two subkeys $K_1, K_2 \in \mathbb{F}_2^8$. Express K_1 and K_2 directly in terms of K. [Hint: Use the text, pp. 52–53.]

Problem 3.1. Refer to Figure 3.2, which depicts key generation for SDES.

- (a) How important is the initial P10 permutation function?
- (b) How important are the two LS-1 shift functions?

Problem 3.3. Using SDES, decrypt the string (10100010) using the key

(0111111101)

by hand. Show intermediate results after each function $(IP, F_K, SW, F_K, IP^{-1})$. Then decode the first 4 bits of the plaintext string to a letter and the second 4 bits to another letter where we encode A through P in base 2 (i.e., $A = 0000, B = 0001, \dots, P = 1111$). [Hint: As a midway check, after the application of SW, the string should be (00010011).]

Problem 3.16. In DES, one has $K_i = \tau \lambda^{n_i} \sigma(K)$ for $1 \le i \le 16$ with τ, λ, σ and n_1, \ldots, n_{16} as explained in class. Prove: $K_{17-i} = \tau \rho^{n_i-1} \sigma(K)$, where $\rho = \lambda^{-1}$. From which property of Table 3.4(c) does this follow?

Date: February 26, 2002. 3.15, 3.1, 3.3, 3.16.