## MATH 195: CRYPTOGRAPHY HOMEWORK \#5

Problem 3.15. In SDES, a key $K=\left(k_{1}, \ldots, k_{10}\right) \in \mathbb{F}_{2}^{10}=(\mathbb{Z} / 2 \mathbb{Z})^{10}$ gives rise to two subkeys $K_{1}, K_{2} \in \mathbb{F}_{2}^{8}$. Express $K_{1}$ and $K_{2}$ directly in terms of $K$. [Hint: Use the text, pp. 52-53.]

Problem 3.1. Refer to Figure 3.2, which depicts key generation for SDES.
(a) How important is the initial P10 permutation function?
(b) How important are the two LS-1 shift functions?

Problem 3.3. Using SDES, decrypt the string (10100010) using the key
(01111111101)
by hand. Show intermediate results after each function $\left(I P, F_{K}, S W, F_{K}, I P^{-1}\right)$. Then decode the first 4 bits of the plaintext string to a letter and the second 4 bits to another letter where we encode $A$ through $P$ in base 2 (i.e., $A=0000, B=0001$, $\ldots, P=1111$ ). [Hint: As a midway check, after the application of $S W$, the string should be (00010011).]

Problem 3.16. In $D E S$, one has $K_{i}=\tau \lambda^{n_{i}} \sigma(K)$ for $1 \leq i \leq 16$ with $\tau, \lambda, \sigma$ and $n_{1}, \ldots, n_{16}$ as explained in class. Prove: $K_{17-i}=\tau \rho^{n_{i}-1} \sigma(K)$, where $\rho=\lambda^{-1}$. From which property of Table 3.4(c) does this follow?

[^0]
[^0]:    Date: February 26, 2002.
    3.15, 3.1, 3.3, 3.16.

