MATH 195: CRYPTOGRAPHY HOMEWORK #4

Problem 3.4'. Let $N \ge 3$. Prove that the probability $\frac{\#\{\sigma \in \operatorname{Sym} N : \exists k \in \{1, 2, \dots, N\} : \sigma(k) = k\}}{N!}$

is $\geq 5/8$ and is $\leq 2/3$.

Problem 2.13. Find constants c_1 and c_2 such that the usual algorithm (shown in class) for finding the inverse of any $A \in GL(k, F)$ over any field F takes no more than $c_1k^{c_2}$ arithmetic operations $(+, -, \cdot, ^{-1})$ in F; how many of these are inversions?

Problem 3.14 (Feistel ciphers). Let $k \ge 2$, $A = (\mathbb{Z}/2\mathbb{Z})^k$, and define the maps

$$\begin{split} s,g &: A \times A \to A \times A \\ s(x,y) &= (y,x) \\ g(x,y) &= \begin{cases} (x,y), & y \neq (0,0,\ldots,0); \\ (x+\underbrace{(1,1,\ldots,1)}_k,(0,0,\ldots,0)), & y = (0,0,\ldots,0). \end{cases} \end{split}$$

Prove: s^2 and g^2 are the identity on $A \times A$, $(sg)^4 = sgsgsgsg$ moves only 3 elements of $A \times A$ (i.e. $(sg)^4((x,y)) \neq (x,y)$ for only 3 elements $(x,y) \in A \times A$), and $(sg)^{12}$ is the identity.

Date: February 19, 2002. 3.4', 2.13, 3.14.