MATH 195: CRYPTOGRAPHY
 HOMEWORK \#4

Problem 3.4'. Let $N \geq 3$. Prove that the probability

$$
\frac{\#\{\sigma \in \operatorname{Sym} N: \exists k \in\{1,2, \ldots, N\}: \sigma(k)=k\}}{N!}
$$

is $\geq 5 / 8$ and is $\leq 2 / 3$.

Problem 2.13. Find constants c_{1} and c_{2} such that the usual algorithm (shown in class) for finding the inverse of any $A \in G L(k, F)$ over any field F takes no more than $c_{1} k^{c_{2}}$ arithmetic operations $\left(+,-, \cdot,^{-1}\right)$ in F; how many of these are inversions?

Problem 3.14 (Feistel ciphers). Let $k \geq 2, A=(\mathbb{Z} / 2 \mathbb{Z})^{k}$, and define the maps

$$
\begin{aligned}
s, g: A \times A & \rightarrow A \times A \\
s(x, y) & =(y, x) \\
g(x, y) & = \begin{cases}(x, y), & y \neq(0,0, \ldots, 0) ; \\
(x+\underbrace{(1,1, \ldots, 1)}_{k},(0,0, \ldots, 0)), & y=(0,0, \ldots, 0) .\end{cases}
\end{aligned}
$$

Prove: s^{2} and g^{2} are the identity on $A \times A,(s g)^{4}=$ sgsgsgsg moves only 3 elements of $A \times A$ (i.e. $(s g)^{4}((x, y)) \neq(x, y)$ for only 3 elements $\left.(x, y) \in A \times A\right)$, and $(s g)^{12}$ is the identity.

[^0]
[^0]: Date: February 19, 2002
 3.4', 2.13, 3.14.

