MATH 195: CRYPTOGRAPHY HOMEWORK \#3

Problem 7.8. Recall $\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{*}$. Give a concise reason why $\phi(n)$ is even for $n>2$.

Problem 7.9(a). Determine gcd $(24140,16762)$.

Problem 7.9(b). Determine $\operatorname{gcd}(4655,12075)$.

Problem 7.9(c). Compute 367^{-1} in $(\mathbb{Z} / 1001 \mathbb{Z})^{*}$ and 1001^{-1} in $(\mathbb{Z} / 367 \mathbb{Z})^{*}$.

Problem 2.11. For which n is the matrix

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}\right)
$$

invertible over $\mathbb{Z} / n \mathbb{Z}$? Find its inverse if $n=100$.

Problem 2.12. Exhibit an algorithm that given a prime number n and $a k \times k$ matrix M over $\mathbb{Z} / n \mathbb{Z}$, computes det M using no more than k^{3} arithmetic operations $\left(+,-, \cdot{ }^{-1}\right)$ in $\mathbb{Z} / n \mathbb{Z}$, of which no more than k are inversions $\left({ }^{-1}\right)$.

[^0]
[^0]: Date: February 12, 2002.
 7.8, 7.9(a)(b)(c), 2.11, 2.12.

