MATH 195: CRYPTOGRAPHY HOMEWORK #3

Problem 7.8. Recall $\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^*$. Give a concise reason why $\phi(n)$ is even for n > 2.

Problem 7.9(a). Determine gcd(24140, 16762).

Problem 7.9(b). Determine gcd(4655, 12075).

Problem 7.9(c). Compute 367^{-1} in $(\mathbb{Z}/1001\mathbb{Z})^*$ and 1001^{-1} in $(\mathbb{Z}/367\mathbb{Z})^*$.

Problem 2.11. For which n is the matrix

(1)	2	3
4	5	6
$\sqrt{7}$	8	10/

invertible over $\mathbb{Z}/n\mathbb{Z}$? Find its inverse if n = 100.

Problem 2.12. Exhibit an algorithm that given a prime number n and a $k \times k$ matrix M over $\mathbb{Z}/n\mathbb{Z}$, computes det M using no more than k^3 arithmetic operations $(+, -, \cdot, ^{-1})$ in $\mathbb{Z}/n\mathbb{Z}$, of which no more than k are inversions $(^{-1})$.

Date: February 12, 2002.

^{7.8, 7.9(}a)(b)(c), 2.11, 2.12.