
ELLIPTIC CURVE CRYPTOGRAPHY (CONTINUED)

MATH 195

A Review

A summary of all we have seen: An elliptic curve over a field k is given by an
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

for ai ∈ k, ∆ 6= 0. We denote E(k) as the set of points (x, y) satisfying this equation
together with the point at infinity, O. E(k) is an (additively written) abelian group.

To compute P + Q, for P,Q ∈ E(k):
• If P = O then P + Q = Q;
• If Q = O then P + Q = P ;
• Else P = (x1, y1) and Q = (x2, y2); P + Q = O if x1 = x2 and y1 + y2 =
−a1x1 − a3;

• Else let

λ =


y2 − y1

x2 − x1
, x1 6= x2

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
, x1 = x2;

and ν = y1 − λx1, x3 = λ2 + a1λ − a2 − x1 − x2, y4 = λx3 + ν, y3 =
a1x3 − a3 − y4, and then P + Q = (x3, y3).

We characterize this group law as follows: To add P 6= Q, draw the (unique) line
y = λx + ν through these two points, the line will intersect the curve E at another
(unique) point R, then we take P + Q = −R, its negative.

Doubling

To double P , draw the tangent line to E at P . This must be understood in a
formal sense: Let F (x, y) be any polynomial in two variables

F (x, y) =
<∞∑

i,j≥0

aijx
iyj

(with only finitely many terms). For example, we would take

F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6.

Suppose F (x0, y0) = 0. What is the tangent line to “F = 0” at (x0, y0)? We let
x = x0 + (x− x0) and y = y0 + (y − y0) so that we can approximate F by a linear
polynomial.

This is some of the material covered May 7–9, in Math 195: Cryptography, taught by Hendrik

Lenstra, prepared by John Voight jvoight@math.berkeley.edu.
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Recall the Taylor expansion of a polynomial f(x) at a point x:

f(x) = f(x0) + (x− x0)f ′(x0) + (x− x0)2
f ′′(x0)

2
+ · · · ≈ f(x0) + (x− x0)f ′(x0)

We mimic this in the two variable case, and again throw out any terms of degree
≥ 2: first we write

F (x, y) =
<∞∑

i,j≥0

aij(x0 + (x− x0))i(y0 + (y − y0))j ;

since by the binomial formula

(x0 + (x− x0))i = xi
0 + ixi−1

0 (x− x0) +
i(i− 1)

2
xi−2

0 (x− x0)2 + . . .

≈ xi
0 + ixi−1

0 (x− x0)

this gives

F (x, y) ≈
<∞∑

i,j≥0

aij(xi
0 + ixi−1

0 (x− x0))(y
j
0 + jyj−1

0 (y − y0))

≈
<∞∑

i,j≥0

aij

(
xi

0y
j
0 + ixi−1

0 yj
0(x− x0) + jxi

0y
j−1
0 (y − y0)

)
= F (x0, y0) +

∂F

∂x

∣∣∣∣
(x0,y0)

(x− x0) +
∂F

∂y

∣∣∣∣
(x0,y0)

(y − y0).

We also write ∂F/∂x = Fx and ∂F/∂y = Fy.
Since F (x0, y0) = 0 (the point is on the curve), we call

∂F

∂x

∣∣∣∣
(x0,y0)

(x− x0) +
∂F

∂y

∣∣∣∣
(x0,y0)

(y − y0)

the tangent line to F at (x0, y0).

Example. Take F = y2 − x3 − 1, representing the curve E : y2 = x3 + 1. The
point (x0, y0) = (0,−1) is on the curve. We compute Fx(x0, y0) = 3x2

0 = 0,
fFy(x0, y0) = 2y0 = −2, so the tangent line is 0(x − x0) + (−2)(y − y0) = 0, or
simply y = −1. This is a horizontal line!

If Fx(x0, y0) = F (x0, y0) = 0, then (x0, y0) is called a singular point of the curve
F = 0. Our requirement ∆ = 0 provides that the elliptic curve has no singular
points.

Note that we can also write it (when Fy(x0, y0) 6= 0):

y = −Fx(x0, y0)
Fy(x0, y0)

x +
Fx(x0, y0)x0 + Fy(x0, y0)y0

Fy(x0, y0)
.

Now for our equation,

F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6,

we have

−Fx(x1, y1)
Fy(x1, y1)

= λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
.

This is how one gets this λ: it is the slope of the tangent line at (x1, y1).
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Definition of ∆

We want our elliptic curves to be nonsingular. This is the condition that ∆ 6= 0.
Define:

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

Then
∆ = −b2

2b8 − 8b3
4 − 27b2

6 + 9b2b4b6.

These coefficients have a meaning: if 2 6= 0 in k, we multiply our equation F by
4 and complete the square:

(2y + a1x + a3)2 = 4x3 + b2x
2 + 2b4x + b6;

treating the expression in parentheses as a new y, we get a new elliptic curve of a
simpler form.

Then we may treat a1 = a3 = 0, and so we have y2 = x3 + a2x
2 + a4x + a6.

Then
∆ = 16(a2

2a
2
4 − 4a3

4 − 4a3
2a6 − 27a2

6 + 18a2a4a6).
This is none other than the discriminant of the polynomial x3 + a2x

2 + a4x + a6:
if the roots of this polynomial are α, β, γ, then this is equal to

16(α− β)2(β − γ)2(γ − α)2.

Other Ways of Defining Elliptic Curves

We have given an elliptic curve (when the characteristic of our field is not 2) as

y2 = x3 + a2x
2 + a4x + a6,

which can be achieved by a change of variable (completing the square). When the
characteristic is not 3, one can “complete the cube”: replace x with (x+ a2/3)3, to
get a curve of the form

y2 = x3 + a4x + a6

(with different a4 and a6).
On occasion, we may have a curve

uy2 + a1xy + a3y = vx3 + a2x
2 + a4x + a6

where u, v 6= 0. Multiply this equation by u3v2 to obtain

u4v2y2 + a1u
3v2xy + a3u

3v2y = u3v3x3 + a2u
3v2x2 + a4u

3v2x + a6u
3v2

and then replace y by u2vy and x by uvx to get

y2 + a1xy + a3uvy = x3 + a2ux2 + a4u
2vx + a6u

3v2.

Third, we supplement each term in our curve with z so that the degree of every
term is 3:

y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3.

It then becomes what we call a homogeneous equation of degree 3. By adding these,
we then care only about the ratio (x : y : z). Therefore we write

(x : y : z) = (x′ : y′ : z′)
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if and only if there exists a c ∈ k∗ such that x′ = cx, y′ = cy, z′ = cz. Note that if
you take a solution to the equation and multiply each variable c, each term in the
equation is scaled by c3, so it is again zero. “Most of the time”, z 6= 0, so it has an
inverse in the field, and then we may scale by z−1 to get

(x : y : z) = (x/z : y/z : 1)

and we get back to the original equation (we substitute z = 1). We exclude the
trivial point (x : y : z) = (0 : 0 : 0). We have extended the plane to what is known
as the projective plane P2(k) as the set of all such ratios,

P2(k) = ((k × k × k) \ (0, 0, 0))/ ∼
where the equivalence relation

(x, y, z) ∼ (x′, y′, z′)

if and only if there is c ∈ k∗ such that x′ = cx, y′ = cy, z′ = cz.
This explains where the point at infinity comes from: we let z = 0, and substi-

tuting this into the equation we get x = 0, so the only point, which we denote as
O, is O = (0 : y : 0) = (0 : 1 : 0).

To avoid divisions in computing the addition of two points, using projective
coordinates we can avoid denominators: (x/d, y/d) = (x/d : y/d : 1) = (x : y : d),
for any denominator d.

In fact, we may (in general) take any projective cubic curve C, defined by a
homogeneous equation F (x, y, z) = 0 of degree 3, subject to the requirements that
F is ‘non-singular’ (so, in particular, F is irreducible), and one is given a point
P0 ∈ C(k). In this case, P0 is the zero element, and if two lines L1, L2 intersect the
curve C in {P1, Q1, R1} and {P2, Q2, R2}, then

P1 + Q1 + R1 = P2 + Q2 + R2.

After awhile, you define an elliptic curve as a nonsingular projective one-dimen-
sional variety of genus one, together with a point on it. (Think of this as analogous
to the abstraction of Rn as a vector space over R with a basis.)


