ELLIPTIC CURVE CRYPTOGRAPHY (CONTINUED)

MATH 195

A Review

A summary of all we have seen: An elliptic curve over a field k is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

for $a_{i} \in k, \Delta \neq 0$. We denote $E(k)$ as the set of points (x, y) satisfying this equation together with the point at infinity, $O . E(k)$ is an (additively written) abelian group.

To compute $P+Q$, for $P, Q \in E(k)$:

- If $P=O$ then $P+Q=Q$;
- If $Q=O$ then $P+Q=P$;
- Else $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right) ; P+Q=O$ if $x_{1}=x_{2}$ and $y_{1}+y_{2}=$ $-a_{1} x_{1}-a_{3}$;
- Else let

$$
\lambda= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, & x_{1} \neq x_{2} \\ \frac{3 x_{1}^{2}+2 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}}, & x_{1}=x_{2}\end{cases}
$$

and $\nu=y_{1}-\lambda x_{1}, x_{3}=\lambda^{2}+a_{1} \lambda-a_{2}-x_{1}-x_{2}, y_{4}=\lambda x_{3}+\nu, y_{3}=$ $a_{1} x_{3}-a_{3}-y_{4}$, and then $P+Q=\left(x_{3}, y_{3}\right)$.
We characterize this group law as follows: To add $P \neq Q$, draw the (unique) line $y=\lambda x+\nu$ through these two points, the line will intersect the curve E at another (unique) point R, then we take $P+Q=-R$, its negative.

Doubling

To double P, draw the tangent line to E at P. This must be understood in a formal sense: Let $F(x, y)$ be any polynomial in two variables

$$
F(x, y)=\sum_{i, j \geq 0}^{<\infty} a_{i j} x^{i} y^{j}
$$

(with only finitely many terms). For example, we would take

$$
F(x, y)=y^{2}+a_{1} x y+a_{3} y-x^{3}-a_{2} x^{2}-a_{4} x-a_{6} .
$$

Suppose $F\left(x_{0}, y_{0}\right)=0$. What is the tangent line to " $F=0$ " at $\left(x_{0}, y_{0}\right)$? We let $x=x_{0}+\left(x-x_{0}\right)$ and $y=y_{0}+\left(y-y_{0}\right)$ so that we can approximate F by a linear polynomial.

[^0]Recall the Taylor expansion of a polynomial $f(x)$ at a point x :

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\left(x-x_{0}\right)^{2} \frac{f^{\prime \prime}\left(x_{0}\right)}{2}+\cdots \approx f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)
$$

We mimic this in the two variable case, and again throw out any terms of degree ≥ 2 : first we write

$$
F(x, y)=\sum_{i, j \geq 0}^{<\infty} a_{i j}\left(x_{0}+\left(x-x_{0}\right)\right)^{i}\left(y_{0}+\left(y-y_{0}\right)\right)^{j}
$$

since by the binomial formula

$$
\begin{aligned}
\left(x_{0}+\left(x-x_{0}\right)\right)^{i} & =x_{0}^{i}+i x_{0}^{i-1}\left(x-x_{0}\right)+\frac{i(i-1)}{2} x_{0}^{i-2}\left(x-x_{0}\right)^{2}+\ldots \\
& \approx x_{0}^{i}+i x_{0}^{i-1}\left(x-x_{0}\right)
\end{aligned}
$$

this gives

$$
\begin{aligned}
F(x, y) & \approx \sum_{i, j \geq 0}^{<\infty} a_{i j}\left(x_{0}^{i}+i x_{0}^{i-1}\left(x-x_{0}\right)\right)\left(y_{0}^{j}+j y_{0}^{j-1}\left(y-y_{0}\right)\right) \\
& \approx \sum_{i, j \geq 0}^{\infty} a_{i j}\left(x_{0}^{i} y_{0}^{j}+i x_{0}^{i-1} y_{0}^{j}\left(x-x_{0}\right)+j x_{0}^{i} y_{0}^{j-1}\left(y-y_{0}\right)\right) \\
& =F\left(x_{0}, y_{0}\right)+\left.\frac{\partial F}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}\left(x-x_{0}\right)+\left.\frac{\partial F}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}\left(y-y_{0}\right) .
\end{aligned}
$$

We also write $\partial F / \partial x=F_{x}$ and $\partial F / \partial y=F_{y}$.
Since $F\left(x_{0}, y_{0}\right)=0$ (the point is on the curve), we call

$$
\left.\frac{\partial F}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}\left(x-x_{0}\right)+\left.\frac{\partial F}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}\left(y-y_{0}\right)
$$

the tangent line to F at $\left(x_{0}, y_{0}\right)$.
Example. Take $F=y^{2}-x^{3}-1$, representing the curve $E: y^{2}=x^{3}+1$. The point $\left(x_{0}, y_{0}\right)=(0,-1)$ is on the curve. We compute $F_{x}\left(x_{0}, y_{0}\right)=3 x_{0}^{2}=0$, $f F_{y}\left(x_{0}, y_{0}\right)=2 y_{0}=-2$, so the tangent line is $0\left(x-x_{0}\right)+(-2)\left(y-y_{0}\right)=0$, or simply $y=-1$. This is a horizontal line!

If $F_{x}\left(x_{0}, y_{0}\right)=F\left(x_{0}, y_{0}\right)=0$, then $\left(x_{0}, y_{0}\right)$ is called a singular point of the curve $F=0$. Our requirement $\Delta=0$ provides that the elliptic curve has no singular points.

Note that we can also write it (when $\left.F_{y}\left(x_{0}, y_{0}\right) \neq 0\right)$:

$$
y=-\frac{F_{x}\left(x_{0}, y_{0}\right)}{F_{y}\left(x_{0}, y_{0}\right)} x+\frac{F_{x}\left(x_{0}, y_{0}\right) x_{0}+F_{y}\left(x_{0}, y_{0}\right) y_{0}}{F_{y}\left(x_{0}, y_{0}\right)} .
$$

Now for our equation,

$$
F(x, y)=y^{2}+a_{1} x y+a_{3} y-x^{3}-a_{2} x^{2}-a_{4} x-a_{6}
$$

we have

$$
-\frac{F_{x}\left(x_{1}, y_{1}\right)}{F_{y}\left(x_{1}, y_{1}\right)}=\lambda=\frac{3 x_{1}^{2}+2 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}}
$$

This is how one gets this λ : it is the slope of the tangent line at $\left(x_{1}, y_{1}\right)$.

Definition of Δ

We want our elliptic curves to be nonsingular. This is the condition that $\Delta \neq 0$. Define:

$$
\begin{aligned}
& b_{2}=a_{1}^{2}+4 a_{2} \\
& b_{4}=2 a_{4}+a_{1} a_{3} \\
& b_{6}=a_{3}^{2}+4 a_{6} \\
& b_{8}=a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2}
\end{aligned}
$$

Then

$$
\Delta=-b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6} .
$$

These coefficients have a meaning: if $2 \neq 0$ in k, we multiply our equation F by 4 and complete the square:

$$
\left(2 y+a_{1} x+a_{3}\right)^{2}=4 x^{3}+b_{2} x^{2}+2 b_{4} x+b_{6} ;
$$

treating the expression in parentheses as a new y, we get a new elliptic curve of a simpler form.

Then we may treat $a_{1}=a_{3}=0$, and so we have $y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$. Then

$$
\Delta=16\left(a_{2}^{2} a_{4}^{2}-4 a_{4}^{3}-4 a_{2}^{3} a_{6}-27 a_{6}^{2}+18 a_{2} a_{4} a_{6}\right)
$$

This is none other than the discriminant of the polynomial $x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$: if the roots of this polynomial are α, β, γ, then this is equal to

$$
16(\alpha-\beta)^{2}(\beta-\gamma)^{2}(\gamma-\alpha)^{2}
$$

Other Ways of Defining Elliptic Curves

We have given an elliptic curve (when the characteristic of our field is not 2) as

$$
y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

which can be achieved by a change of variable (completing the square). When the characteristic is not 3 , one can "complete the cube": replace x with $\left(x+a_{2} / 3\right)^{3}$, to get a curve of the form

$$
y^{2}=x^{3}+a_{4} x+a_{6}
$$

(with different a_{4} and a_{6}).
On occasion, we may have a curve

$$
u y^{2}+a_{1} x y+a_{3} y=v x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $u, v \neq 0$. Multiply this equation by $u^{3} v^{2}$ to obtain

$$
u^{4} v^{2} y^{2}+a_{1} u^{3} v^{2} x y+a_{3} u^{3} v^{2} y=u^{3} v^{3} x^{3}+a_{2} u^{3} v^{2} x^{2}+a_{4} u^{3} v^{2} x+a_{6} u^{3} v^{2}
$$

and then replace y by $u^{2} v y$ and x by $u v x$ to get

$$
y^{2}+a_{1} x y+a_{3} u v y=x^{3}+a_{2} u x^{2}+a_{4} u^{2} v x+a_{6} u^{3} v^{2} .
$$

Third, we supplement each term in our curve with z so that the degree of every term is 3 :

$$
y^{2} z+a_{1} x y z+a_{3} y z^{2}=x^{3}+a_{2} x^{2} z+a_{4} x z^{2}+a_{6} z^{3} .
$$

It then becomes what we call a homogeneous equation of degree 3. By adding these, we then care only about the ratio $(x: y: z)$. Therefore we write

$$
(x: y: z)=\left(x^{\prime}: y^{\prime}: z^{\prime}\right)
$$

if and only if there exists a $c \in k^{*}$ such that $x^{\prime}=c x, y^{\prime}=c y, z^{\prime}=c z$. Note that if you take a solution to the equation and multiply each variable c, each term in the equation is scaled by c^{3}, so it is again zero. "Most of the time", $z \neq 0$, so it has an inverse in the field, and then we may scale by z^{-1} to get

$$
(x: y: z)=(x / z: y / z: 1)
$$

and we get back to the original equation (we substitute $z=1$). We exclude the trivial point $(x: y: z)=(0: 0: 0)$. We have extended the plane to what is known as the projective plane $\mathbb{P}^{2}(k)$ as the set of all such ratios,

$$
\mathbb{P}^{2}(k)=((k \times k \times k) \backslash(0,0,0)) / \sim
$$

where the equivalence relation

$$
(x, y, z) \sim\left(x^{\prime}, y^{\prime}, z^{\prime}\right)
$$

if and only if there is $c \in k^{*}$ such that $x^{\prime}=c x, y^{\prime}=c y, z^{\prime}=c z$.
This explains where the point at infinity comes from: we let $z=0$, and substituting this into the equation we get $x=0$, so the only point, which we denote as O, is $O=(0: y: 0)=(0: 1: 0)$.

To avoid divisions in computing the addition of two points, using projective coordinates we can avoid denominators: $(x / d, y / d)=(x / d: y / d: 1)=(x: y: d)$, for any denominator d.

In fact, we may (in general) take any projective cubic curve C, defined by a homogeneous equation $F(x, y, z)=0$ of degree 3 , subject to the requirements that F is 'non-singular' (so, in particular, F is irreducible), and one is given a point $P_{0} \in C(k)$. In this case, P_{0} is the zero element, and if two lines L_{1}, L_{2} intersect the curve C in $\left\{P_{1}, Q_{1}, R_{1}\right\}$ and $\left\{P_{2}, Q_{2}, R_{2}\right\}$, then

$$
P_{1}+Q_{1}+R_{1}=P_{2}+Q_{2}+R_{2}
$$

After awhile, you define an elliptic curve as a nonsingular projective one-dimensional variety of genus one, together with a point on it. (Think of this as analogous to the abstraction of \mathbb{R}^{n} as a vector space over \mathbb{R} with a basis.)

[^0]: This is some of the material covered May 7-9, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

