ELLIPTIC CURVE CRYPTOGRAPHY (CONTINUED)

MATH 195

A REVIEW

A summary of all we have seen: An elliptic curve over a field k is given by an
equation
E:y? 4+ a1zy + asy = 2° + asz® + asx + ag
for a; € k, A # 0. We denote E(k) as the set of points (z, y) satisfying this equation
together with the point at infinity, O. E(k) is an (additively written) abelian group.
To compute P + Q, for P,Q € E(k):
e If P=0 then P+Q = Q:
e If Q=0 then P+ Q = P;
e Else P = (z1,y1) and Q = (z2,42); P+ Q = O if x1 = 29 and y; + y2 =

—a1%1 — a3;
e Else let
Y2 — Y1
— T # X2
A={ 525 ")
3x1 + 2a2w1 + a4 — a1y; )
, X1 = T2;

2y1 + a171 + a3

and v = y1 — Az1, 23 = X2+ A\ — a9 —T1 — To, Ya = A\T3 4+ U, y3 =
a1rs — az — yg, and then P+ Q = (z3,y3).

We characterize this group law as follows: To add P # @, draw the (unique) line

y = Ax + v through these two points, the line will intersect the curve F at another
(unique) point R, then we take P 4+ Q = —R, its negative.

DOUBLING

To double P, draw the tangent line to E at P. This must be understood in a
formal sense: Let F'(x,y) be any polynomial in two variables

<oo
F(z,y) = Z aijz'y’
4,j20
(with only finitely many terms). For example, we would take

3

F(z,y) = y2 +aizy +azy —x —a2x2 — a4 — Q.

Suppose F(xg,yo) = 0. What is the tangent line to “F = 07 at (xo,yo)? We let

x=u1z0+ (x —x0) and y = yo + (y — yo) so that we can approximate F' by a linear
polynomial.

This is some of the material covered May 7-9, in Math 195: Cryptography, taught by Hendrik
Lenstra, prepared by John Voight jvoight@math.berkeley.edu.
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Recall the Taylor expansion of a polynomial f(x) at a point x:

1) = @) + (= 20) (@0) + (o 20l T - fan) + (2= 20) o)

We mimic this in the two variable case, and again throw out any terms of degree
> 2: first we write

<oo

F(z,y) = Y aij(zo+ (z — 20))" (o + (¥ — v0))’;
i,5>0

since by the binomial formula

(2o + (x — m9))" = @ + iy (z — o) +

i(t—1) ,
( 5 ):cf)_Q(xfxo)qu...
~ b+ iy (z — x0)

this gives
<oo
S o
F(z,y) ~ Y ai(xh+izg (@ —20)) () + 34 (v — v0))

i,5>0

~ 3 i (bl + ol (e — 20) + iyl (v — wo))
i,5>0

oF OF
:F(ﬂcmyo)'i‘a* (x —x0) + P (¥ — yo).
T (@o,90) Y 1 (@o,50)

We also write 0F/0x = F, and 0F/0y = F,.
Since F'(zg,y0) = 0 (the point is on the curve), we call
or L oF

ox Jy

(¥ — vo)
(z0,Y0)

(z — x0)
(z0,90)

the tangent line to F at (o, yo).

Example. Take F = y? — 23 — 1, representing the curve F : 3% = 23 +
point (zg,y0) = (0,—1) is on the curve. We compute F,(xo,yo) = =
fFy(xo,y0) = 2yo = —2, so the tangent line is 0(z — zo) + (—=2)(y — yo) = 0, or
simply y = —1. This is a horizontal line!

If F.(z0,y0) = F(x0,y0) = 0, then (xq,yo) is called a singular point of the curve
F = 0. Our requirement A = 0 provides that the elliptic curve has no singular
points.

Note that we can also write it (when Fy(zo,y0) # 0):

Fy(z0,y0) Fi(0,y0)To + Fy (w0, Y0)Yo
x .

Fy(zo,y0) Fy(z0,%0)

Now for our equation,

F((E,y) = y2 + arry + agy — 1'3 - QQSU2 — a4 — Ag,
we have
~ Fy(w,u1) oy 323 4 2a211 + a4 — a1
Fy(z1,91) 2y1 +a171 + ag '

This is how one gets this A: it is the slope of the tangent line at (z1,y1).
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DEFINITION OF A

We want our elliptic curves to be nonsingular. This is the condition that A # 0.
Define:

bQ = a% + 4&2
by = 2a4 + ajas
b6 = a% + 4a6
bg = a%a(; + 4dasag — araszay + agag — aZ
Then
A = —b3bg — 8bj — 27b3 + abab.
These coefficients have a meaning: if 2 0 in k, we multiply our equation F' by
4 and complete the square:

2y + a1z + a3)2 = 42° + byx® + 2byx + bg;

treating the expression in parentheses as a new y, we get a new elliptic curve of a
simpler form.
Then we may treat a1 = az = 0, and so we have ¥ = 23 + a222 + a2 + as.
Then
A = 16(a3a3 — 4a3 — 4a3as — 27a2 + 18aza4a).
This is none other than the discriminant of the polynomial 2 + asz? + a4z + ag:
if the roots of this polynomial are a, 3,7y, then this is equal to

16(a — B)*(8 — 7)*(y — ).
OTHER WAYS OF DEFINING ELLIPTIC CURVES

We have given an elliptic curve (when the characteristic of our field is not 2) as

2 3 2
Y° =x° + ax” + aq4x + ag,

which can be achieved by a change of variable (completing the square). When the
characteristic is not 3, one can “complete the cube”: replace x with (z + a2/3)3, to
get a curve of the form
y2 :m3+a4x+a6
(with different a4 and ag).
On occasion, we may have a curve

qu +a1xy +azy = vz + ang + asx + ag

where u,v # 0. Multiply this equation by u3v? to obtain

4,2, 2 3 3,3,..3 3

u vy +aiu vzxy—i—aguSUZy:u VX7 + asu 3

vz + a6u3v2

vie? + aqu
and then replace y by u?vy and = by vz to get

y2 + a1xy + asuvy = x> + agux2 + a4ugvx + a6u3112.

Third, we supplement each term in our curve with z so that the degree of every
term is 3:
yzz +a1ryz + a3yz2 =23 + angZ + a4wz2 + agzg.
It then becomes what we call a homogeneous equation of degree 3. By adding these,
we then care only about the ratio (x : y : z). Therefore we write

(x:y:2)=(2":y :7)



4 MATH 195

if and only if there exists a ¢ € k* such that 2’ = cx,y’ = cy, 2’ = cz. Note that if
you take a solution to the equation and multiply each variable ¢, each term in the
equation is scaled by ¢, so it is again zero. “Most of the time”, z # 0, so it has an
inverse in the field, and then we may scale by 2! to get

(x:y:2)=(x/z:y/z:1)
and we get back to the original equation (we substitute z = 1). We exclude the
trivial point (z :y: z) = (0:0:0). We have extended the plane to what is known
as the projective plane P?(k) as the set of all such ratios,
B2(k) = ((k x b x K)\ (0,0,0))/ ~
where the equivalence relation
(z,y,2) ~ (@9, )
if and only if there is ¢ € k* such that 2’ = cz, ¥’ = cy, 2’ = cz.

This explains where the point at infinity comes from: we let z = 0, and substi-
tuting this into the equation we get x = 0, so the only point, which we denote as
0,isO0=(0:y:0)=(0:1:0).

To avoid divisions in computing the addition of two points, using projective
coordinates we can avoid denominators: (z/d,y/d) = (x/d :y/d:1) = (z:y:d),
for any denominator d.

In fact, we may (in general) take any projective cubic curve C, defined by a
homogeneous equation F'(z,y,z) = 0 of degree 3, subject to the requirements that
F' is ‘non-singular’ (so, in particular, F' is irreducible), and one is given a point
Py € C(k). In this case, P is the zero element, and if two lines Ly, Ly intersect the
curve C in {P1,Q1, R1} and {P», @2, Rz}, then

P+Qi+Ri =P +Q2+ Ro.

After awhile, you define an elliptic curve as a nonsingular projective one-dimen-
sional variety of genus one, together with a point on it. (Think of this as analogous
to the abstraction of R™ as a vector space over R with a basis.)



