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For a reference on elliptic curves and their cryptographic applications, see:
• Alfred J. Menezes, Elliptic curve public key cryptosystems, 1993.
• Joseph H. Silverman and John Tate, Rational points on elliptic curves,

1992. (An undergraduate mathematics text on elliptic curves.)
• J.W.S. Cassels, Lectures on elliptic curves, 1991. (Informal and mathemat-

ical.)
An elliptic curve is not an ellipse! An ellipse is a degree 2 equation of the form

x2 + ay2 = b. (However, given such an ellipse, you could try to compute the arc
length of a certain portion of the curve; the integral which arises can be associated
to an elliptic curve.)

Elliptic curves

Let k be a field, e.g. k = R, C, Q, Fq. An elliptic curve E over k is defined by an
equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with a1, . . . , a6 ∈ k, satisfying a weak condition ∆ = ∆(a1, . . . , a6) 6= 0. We number
the coefficients this way because we give x degree 2, y degree 3, so that y2 and x3

both have degree 6, and then the “degree” of the coefficient records the difference
to make every term have degree 6.

We define

E(k) = {(x, y) ∈ k × k : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6} ∪ {O},

where O is the ‘point at infinity’. Some explanations are to follow.

Example. If k = R, we take the honest elliptic curve E : y2 = x3 − x. You can
graph this equation by graphing f(x) = x3 − x and then plotting the squareroot
of this function (omitting when x3 − x < 0). Notice that we have two ‘loops’ (over
R), but we may also have only one, as in the case E : y2 = x3 + x.

The condition ∆ 6= 0 is equivalent to every point being a “smooth” point, i.e.
there is a uniquely defined tangent line at each point. For example, the curve
y2 = x3 + x2 has a “node” at (x, y) = (0, 0), and is not an elliptic curve as ∆ = 0.
Similarly, the curve y2 = x3 has a “cusp” at the origin, and again is not allowed.
Do not worry about this condition: any homework problem will be given satisfying
this condition.

The ‘point at infinity’ is the point ‘connecting’ the second loop in the example.
The problem: if you consider the plane, R2, two lines “usually” intersect, but
sometimes lines are parallel. This is an unsatisfactory situation, because too many
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exceptional circumstances can arise when trying to prove theorems. Instead of this
affine plane, which we denote A2(R), we let

P2(R) = A2(R) ∪ {line at infinity}.

where the line at infinity corresponds to all of the possible slopes. We call this the
projective plane. Two lines which are parallel in the affine plane have the same
slope and hence ‘intersect’ at one of these additional points in the projective plane.
This has other advantages: in most cases, two curves of degree d and e intersect in
de points.

Example. We may take k = Q: E : y2 = x3 + 1. Euler (1706-1783) proved that
E(Q) = {(0,±1), (−1, 0), (2,±3)}∪{O}. This is all of the points which are rational
numbers!

For E : y2 = x3 + x, we have E(Q) = {O} ∪ {(0, 0)}. A proof: if x = a/b,
gcd(a, b) = 1, say b > 0. Then

x3 + x =
a(a2 + b2)a

b3
=

c2

d2
= y2

is the square of a rational number, again with gcd(c, d) = 1. Now the numerator and
denominator of a(a2 + b2)/b3 are also relatively prime: if p | b3 and p | a(a2 + b2),
then p | b so p - a so p | (a2 + b2) so p | a2 so p | a, a contradiction. This
representation as fractions is unique, so a(a2 + b2) = c2, and b3 = d2. Therefore b
must be a square by the second equation, say b = e2. We have gcd(a, a2 + b2) = 1,
and their product is a square, so they must each be squares: a = f2, a2 + b2 = g2.
Then e4 + f4 = g2. Now by Fermat, this has no solutions in strictly positive
integers. This does it! Geez!

Elliptic Curves over Fq

Now let k = Fq, a finite field.

Example. Now consider the curve E : y2 = x3 + x over F3. Then what is E(F3)?
We make a table (using Fermat’s little theorem: x3 ≡ x (mod 3):

x x3 + x = −x y
0 0 0
1 -1 -
-1 1 ±1

Notice that−1 is not a square in F3 = Z/3Z, so the second line has no corresponding
y value. Therefore E(F3) = {O} ∪ {(0, 0), (−1,±1)}, a group of order 4.

Now consider k = F9 = F3[X]/(X2 + 1). What is E(F9)? Notice that we may
write X = i, since then i2 = X2 = −1. (This is purely formal!) We again make a
table:
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x x3 + x y
0 0 0
1 -1 ±i
-1 1 ±1
i 0 0

i + 1 (i3 + 13) + (i + 1) = −1 ±i
i− 1 1 ±1
−i 0 0

−i + 1 −(−1) = 1 ±1
−i− 1 −1 ±i

This gives

E(F9) = {O, (1,±i), (−1,±1), (±i, 0), (±(i− 1),±1), (±(i + 1),±i), (0, 0)}
so #E(F9) = 16.

What can we say about #E(Fq)? There is always the point at infinity, and at
most q possibilities for both x and y, so

1 ≤ E(Fq) ≤ q2 + 1.

(Don’t forget the point at infinity!)
In fact, E(Fq) ≤ 2q + 1: for x there are at most q choices, and then y satisfies a

polynomial of degree 2, hence there are at most 2 choices for y given x.
There is a more precise statement, due to Hasse:

Theorem (Hasse, first version). If E is an elliptic curve over Fq, then

|#E(Fq)− (q + 1)| ≤ 2
√

q.

This is a probablistic calculation: try out every x ∈ Fq, together with the point
at infinity, half of the time there will be a squareroot (and hence two values of y)
and half the time not: the average is then q + 1, and the variance (like flipping a
coin q times) is 2

√
q. Phrased in another way, we have

(
√

q − 1)2 = q + 1− 2
√

q ≤ #E(Fq) ≤ q + 1 + 2
√

q = (
√

q + 1)2.

In fact, for almost all values in this range, there exists an elliptic curve with that
many points. (There are exceptions, but they are completely under control.)

Note that for the example E : y2 = x3 + x over F3, we have #E(F9) = 16 =
(
√

9 + 1)2, hence this is the richest elliptic curve over F9, no other can have more
points.

Theorem (Hasse, second version). For every elliptic curve E over Fq there is a
complex number π with |π| =

√
q (π 6= 3.141592 . . . !) such that for all n ≥ 1, one

has
E(Fqn) = (πn − 1)(πn − 1) = qn + 1− (πn + πn).

We often write tn = πn + πn, this is the “trace of Frobenius”. Note that

|tn| ≤ |πn|+ |πn| ≤ 2
√

qn.

Taking n = 1, we obtain the inequality in the first version of the theorem.
Returning to our example, we see that for E : y2 = x3 + x, we had

#E(F3) = 4 = 3 + 1− (π + π),
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and ππ = 3, so we see that π = ±
√

3i. We check:

#E(F9) = (π2 − 1)(π2 − 1) = (−4)(−4) = 16.

Group Structure on an Elliptic Curve

There is an abelian group law on the set of points of an elliptic curve over a field.
Given a field k and an elliptic curve E defined over k, and P,Q ∈ E(k), how do we
compute the “addition” P + Q? Property 1: The zero element is the point O at
infinity.

Property 2: −O = O, −(x, y) = (x,−y − a1x− a3). This is the ‘other’ solution
to the equation

y2 + (a1x + a3)y − (x3 + a2x
2 + a4x + a6) = 0.

This quadratic has two roots, y1, y2, and y1+y2 = −a1x−a3, so y2 = −a1x−a3−y1.
If a1 = a3 = 0, then −(x, y) = (x,−y).

Now take the example y2 = x3 + x over F3. Let us build a table of the points.
We have

+ O (0, 0) (−1, 1) (−1,−1)
O O (0, 0) (−1, 1) (−1,−1)

(0, 0) (0, 0)
(−1, 1) (−1, 1)

(−1,−1) (−1,−1)

Now we see that (−1, 1) = −(−1,−1) by Property 2, so (−1, 1) + (−1,−1) = O,
and therefore (0, 0) + (0, 0) = O. This gives

+ O (0, 0) (−1, 1) (−1,−1)
O O (0, 0) (−1, 1) (−1,−1)

(0, 0) (0, 0) O
(−1, 1) (−1, 1) O

(−1,−1) (−1,−1) O

Finally, this table must represent a group, so you cannot repeat elements in any
row or column. Therefore (−1, 1) + (0, 0) = (−1,−1), since it cannot be any of the
other three. This allows us to fill out the table:

+ O (0, 0) (−1, 1) (−1,−1)
O O (0, 0) (−1, 1) (−1,−1)

(0, 0) (0, 0) O (−1,−1) (−1, 1)
(−1, 1) (−1, 1) (−1,−1) (0, 0) O

(−1,−1) (−1,−1) (−1, 1) O (0, 0)

In the other cases, we have formulae to compute P + Q:

• If P = O, then P + Q = O + Q = Q. Otherwise P = (x1, y1).
• If Q = O, then P + Q = P . Otherwise Q = (x2, y2).
• If x1 = x2 = x and y1 + y2 = −a1x − a3, then P = −Q and P + Q = O.

Otherwise y1 + y2 + a1x + a3 6= 0.
• If P 6= Q (x1 6= x2), compute the (unique) line through the points P,Q,

y = λx + ν:

λ =
y2 − y1

x2 − x1
;
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otherwise, if P = Q, then we compute the tangent line to the curve at the
point P :

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
.

(Note that we have taken derivatives in a formal sense: use implicit differ-
entiation on the equation for E, and solve for dy/dx.) We always have

ν = y1 − λx1.

Now intersect y = λx + ν with the curve

x3 + a2x
2 + a4x + a6 − y2 − (a1x + a3)y = 0.

This intersects a degree 3 equation with a line (degree 1), so we expect
3 · 1 = 3 solutions: two of these are P and Q, so we will obtain another, R.
We solve by substitution:

x3 + (a2 − a1λ− λ2)x2 + (a4 − 2λν − a1ν − a3λ) + (−ν2 + a6 − a3ν) = 0.

The three roots add up to the negative of the coefficient on x2:

x3 = λ2 + a1λ− a2 − x1 − x2.

We let y4 = λx3 + ν, and then y3 = −y4 − a1x3 − a3. The point P + Q =
R = (x3, y3).

Property 3: If a straight line intersects the curve in points P,Q,R, then P +Q+
R = O. This is why P + Q = −R above.

Example. Take y2 = x3 + 1 over k = R. We add the points P = (−1, 0) and
Q = (0, 1). We see the line y = λx + ν that goes through these points is λ = 1,
ν = 1. We see then that

x3 = 1− x1 − x2 = 1− (−1) = 2

and
y3 = −(λx3 + ν) = −(2 + 1) = −3.

Therefore (−1, 0) + (0, 1) = (2,−3).

Example. Let us verify an entry in our table above, E : y2 = x3 + x over F3, P =
(−1, 1), Q = (0, 0). We then compute that λ = −1, ν = 0, and x3 = 1− (−1)+0 =
−1, y3 = −((−1)(−1)+0) = −1. So we have verified that (−1, 1)+(0, 0) = (−1,−1).


