DISCRETE LOGARITHM (CONTINUED)

MATH 195

An example

Here is a baby example of a Diffie-Hellman exchange. Recall A picks an integer a (and keeps it secret), computes g^{a}, and sends g^{a} to B. Similarly, B picks an integer b (and keeps it secret), computes g^{b}, and sends g^{b} to A. A computes $h=\left(g^{b}\right)^{a} \in G$, B computes $h=\left(g^{a}\right)^{b} \in G$, and h is the common secret key. E given G, g, g^{a}, g^{b} hopefully cannot compute $g^{a b}$.

Take $G=\mathbb{F}_{32}^{*}, \mathbb{F}_{32}=\mathbb{F}_{2}[X] /\left(X^{5}+X^{2}+1\right), g=00010=X$ is a primitive root. Note that $\mathbb{F}_{32} \neq \mathbb{Z} / 32 \mathbb{Z}$!
A picks $a=4, g^{a}=X^{4}=10000 ; B$ picks $b=5, g^{b}=X^{5}=X^{2}+1=00101$. We have $h=(00101)^{4}=\left((00101)^{2}\right)^{2}=(10001)^{2}$ by the freshperson's dream, and this is 100000001 . We reduce this against $X^{5}+X^{2}+1=100101$ and get the remainder $01100=X^{3}+X^{2}$:

1	0	0	0	0	0	0	0	1
1	0	0	1	0	1			
			1	0	0	1	0	1
				0	1	1	0	0

In the same manner, we verify that $(10000)^{5}=01100$ as well.

ElGamal

Now we describe the cryptosystem of Taher ElGamal (1985) based on G, g.
We have $\mathcal{P}=G, \mathcal{C}=G \times G$, and let $\mathcal{R}=\{1,2, \ldots, m-1\}$ be the space of random numbers. Prior to all communication, B picks an integer b (and keeps it secret) and makes g^{b} public. This is the public key.

Suppose A wants to send a message x to B, where we assume $x \in G$. A picks an integer a (and keeps it secret) and she sends g^{a} and $x \cdot\left(g^{b}\right)^{a}$. This is the encryption map:

$$
\begin{aligned}
\mathcal{K} \times \mathcal{P} \times \mathcal{R} & \xrightarrow{E} \mathcal{C} \\
\left(k=g^{b}, x, a\right) & \mapsto E_{k, a}(x)=\left(g^{a}, x\left(g^{b}\right)^{a}\right) .
\end{aligned}
$$

B recovers x by computing

$$
x \cdot\left(g^{b}\right)^{a}\left(\left(g^{a}\right)^{b}\right)^{-1}=x .
$$

Decryption can be described as:

$$
\begin{aligned}
\mathcal{K} \times \mathcal{C} & \xrightarrow{D} \mathcal{P} \\
\left(k=g^{b},(f, y)\right) & \mapsto D_{k}(f, y)=y \cdot\left(f^{b}\right)^{-1}
\end{aligned}
$$

This is some of the material covered April 18-23, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

Example. Let $G=\mathbb{F}_{32}^{*}$ as above, $g=X=00010$. Take $b=5, k=g^{b}=00101$. Let us send the message $x=10101, a=4$. A sends to $B: g^{a}=100000$ together with

$$
x\left(g^{b}\right)^{a}=(10101) \cdot(01101)=00111
$$

B computes

$$
(00111) \cdot(10000)^{-5}
$$

We cheat a little: $10000=X^{4}$ so $(10000)^{-5}=X^{-20}$. We have $X^{31}=1$ since $\# \mathbb{F}_{32}^{*}=31$, so $X^{-20}=X^{11}=100000000000$, which reduces to 00111 , hence

$$
(00111) \cdot(00111)=(00111)^{2}=10101
$$

by the freshperson's dream, which is the correct message.
The problem faced by E : Knowing $G, g, g^{b}, g^{a}, x g^{a b}$ but not b, a, she wants to compute x. We compare this to the previous problem faced by E (in DiffieHellman): knowing G, g, g^{a}, g^{b}, she wants to compute $g^{a b}$. It is clear that the ability to solve one of these problems is equivalent to the ability to solve the other (if you can compute x knowing $x g^{a b}$, you can divide to get $g^{a b}$, and if you can compute $g^{a b}$ knowing $x g^{a b}$, you can divide to get x).

One possible improvement: send g^{a} once and for all.

Algorithms for Computing Discrete Logarithms

Recall that the discrete logarithm problem given a group G and an element $g \in G$ is the problem of finding $\log _{g} h$ upon input h. Recall $\log _{g} h=i$ if $h=g^{i}$ $(i \in \mathbb{Z} / m \mathbb{Z}, m=\operatorname{ord}(g))$, and $\log _{g} h$ is undefined if $h \notin\langle g\rangle$.

Method 1 (Complete enumeration). Compute $g^{0}=1, g^{1}=g, g^{2}=g \cdot g$, $g^{3}=g \cdot g^{2}, \ldots, g^{n+1}=g \cdot g^{n}$ until you encounter h. If you find $g^{n}=h$ then $n=\log _{g} h$. If before finding h you find $g^{m}=1$, then $h \notin\langle g\rangle$. This algorithm is naive, and takes time $m / 2 \sim m$ operations in G, which in this case are all multiplications.

This is fast for small m, and slow for large m.
Method 2 (Baby step-giant step). Pick a positive integer M with $M^{2} \geq m=$ $\operatorname{ord}(g)$, e.g. $\lceil\sqrt{m}\rceil$ (or the squareroot of any upper bound on the order of g or of the group will work).

Compute $h, h \cdot g, h \cdot g^{2}, \ldots, h \cdot g^{M-1}$ (the baby steps) and $g^{M}, g^{2 M}, \ldots, g^{M^{2}}$ (the giant steps). Note that we step by 1 in g for the baby steps and by M in g for the giant steps. We check whether these two sequences have a member in common. If so, then $h \cdot g^{i}=g^{j M}$, so $h=g^{j M-i}$ and $\log _{g} h=j M-i$. If they do not, then $\log _{g} h$ doesn't exist.

Example. Let $G=\mathbb{F}_{p}^{*}, p=29, g=2, h=3$. We take $M=\lceil\sqrt{29}\rceil=6$. We compute the baby steps

$$
3,6,12,24=-5,-10,-20=9
$$

(notice that we double every time) and the giant steps

$$
2^{6}=6,6 \cdot 6=7,13, \ldots
$$

but we see already that 6 is in common to both of these lists, so $2^{6}=3 \cdot 2$ in \mathbb{F}_{29}, so $3=2^{5}$ in \mathbb{F}_{29}.

Notice that we must compare two lists. If one does this naively (by comparing every two pairs of elements), then one requires time $O\left(M^{2}\right)$. However, by keeping the list sorted (using a quicksort algorithm or some such), then the time required is $O(M)$ (or perhaps slightly faster) with space $O(M)$.

Here is a proof that if $\log _{g} h$ exists, the algorithm will find it. Say $h=g^{a}$, $0<a \leq m$. Then $a \leq M^{2}$, so the least multiple $j M$ of M that is $\geq a$ is $\leq M^{2}$, so $0<j \leq M$. Write $j M=a+i$. Then $i \geq 0$ and $i<M$ (otherwise $(j-1) M \geq a$, contradicting the choice of j). Hence

$$
h g^{i}=g^{a} g^{i}=g^{a+i}=g^{j M}
$$

so the sequences intersect, and the algorithm finds the logarithm.
If you want to find the least positive a with $h=g^{a}$, pick j minimal such that $g^{j M}$ is in the first sequence and given j, pick i maximal such that $g^{j M}=h g^{i}$. Applying this method to $h=1$, it will find the least positive a with $g^{a}=1$, in other words, it will determine m.

If G is not required to be abelian, it may be wise to first test whether $h g=g h$. If $h g \neq g h$, then $\log _{g} h$ does not exist! (If it did, and $h=g^{a}$, then $h g=g^{a} g=$ $g^{a+1}=g h$.) If $h g=g h$, then $\langle g, h\rangle$ is an abelian subgroup of G, so it is enough to have crytographic systems built upon abelian groups in some sense.

Method 3 (Pohlig-Hellman). The input: $G, g, m=\operatorname{ord}(g), m=m_{1} m_{2} \ldots m_{t}$, $m_{i} \in \mathbb{Z}_{>0}$ positive integers. It is important to know the order of g and a factorization of this order. The output is $\log _{g} h$, with time "dominated by" the quantity

$$
\max \left\{\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{t}}\right\}
$$

(We are using the following fact from algebra: we have $\langle 1\rangle \subset\left\langle g^{m_{t}}\right\rangle \subset\langle g\rangle$, where now $g^{m_{t}}$ has order $m^{\prime}=m / m_{t}$, so we may compute the logarithm in a smaller group.)

Here is the algorithm, by steps:
(1) Compute $m^{\prime}=m_{1} m_{2} \ldots m_{t-1}=m / m_{t}$.
(2) Use the baby step-giant step method (or complete enumeration) to find $a=\log _{g^{m^{\prime}}} h^{m^{\prime}}$. If it doesn't exist, then $\log _{g} h$ doesn't exist either, and the algorithm stops. [Note: $h=g^{a}$, where a is taken modulo m, becomes $h^{m^{\prime}}=\left(g^{m^{\prime}}\right)^{a}$, where now a is taken modulo m_{t}.]
(3) Compute $h g^{-a}$. If it is equal to 1 , then we are done at this stage: $h=g^{a}$.
(4) Use the Pohlig-Hellman method with input

$$
G, g^{m_{t}}, m^{\prime}=m_{1} m_{2} \ldots m_{t-1}, h g^{-a}
$$

to compute $b=\log _{g^{m_{t}}}\left(h g^{-a}\right)\left(\right.$ in time essentially $\left.\max \left\{\sqrt{m_{1}}, \ldots, \sqrt{m_{t-1}}\right\}\right)$. Output $\log _{g} h=m_{t} b+a$ if b exists, and if it does not, then the $\log _{g} h$ does not exist either.
The correctness of this method relies on the following claim:
Claim. We have as sets $\left\{x \in\langle g\rangle: x^{m^{\prime}}=1\right\}=\left\langle g^{m_{t}}\right\rangle$.
Proof. Suppose that $x=g^{c}$ with $x^{m^{\prime}}=g^{c m^{\prime}}=1$. Then cm^{\prime} is divisible by $m=m^{\prime} m_{t}$, so

$$
\frac{c m^{\prime}}{m}=\frac{c}{m_{t}}
$$

are both integers, and hence c is divisible by m_{t}. This proves one inclusion, and the other is clear: any element $g^{m_{t} d}$ is a power of g with $\left(g^{m_{t} d}\right)^{m^{\prime}}=g^{m d}=1$.

Example. Given G, and $g \in G, m=\langle g\rangle=m_{1} m_{2} \ldots m_{t}, t \geq 1$, and $h \in G$, we compute $\log _{g} h$ by reducing the problem to a computation involving $m^{\prime}=m_{1} \ldots m_{t-1}$, $h^{m^{\prime}}, g^{m^{\prime}}$.

Take $G=\mathbb{F}_{101}^{*}$, with $g=2 \in G, m=100=10 \cdot 10, h=3$. We have $m^{\prime}=10$, and we compute

$$
h^{\prime}=h^{m^{\prime}}=3^{10}=\left(\left(3^{2}\right)^{2} \cdot 3\right)^{2}=(-60)^{2}=3600=-36 .
$$

We also compute $g^{\prime}=g^{m^{\prime}}=2^{10}=1024=14=g^{m^{\prime}}$. Note that since g has order 100 (it is a primitive root), $g^{m^{\prime}}$ has order 10 .

Now we compute $\log _{g^{m^{\prime}}} h^{m^{\prime}}$ using the baby step-giant method. We need $M^{2} \geq$ m_{t}, so $M=4$. We compute $h^{\prime}, h^{\prime} g^{\prime}, \ldots,\left(h^{\prime}\right)\left(g^{\prime}\right)^{M-1}$, which is the sequence

$$
-36,-36 \cdot 14=1,1 \cdot 14=14,14 \cdot 14=-6 .
$$

Now we compare it to the sequence $\left(g^{\prime}\right)^{M},\left(g^{\prime}\right)^{2 M}, \ldots,\left(g^{\prime}\right)^{M^{2}}$, and get

$$
14^{4}=36,36^{2}=-17,-17 \cdot 36=-6
$$

so bingo (!): we see that $14^{12}=-36 \cdot 14^{3}$, so $-36=14^{9}$. In other words,

$$
a=\log _{g^{\prime}} h^{\prime}=\log _{14}(-36)=3 M-3=9 .
$$

Of course, since $-36 \cdot 14=1$, we know already $-36=14^{-1}=14^{9}$, since 14 has order 10. In fact, it is easier to work with $a=-1$, since we only care about a modulo 10 .

Now we compute $h g^{-a}=3 \cdot 2^{-(-1)}=6 \neq 1$. We compute $g^{m_{t}}=2^{10}=14$, and $m^{\prime}=10$, and $h g^{-a}=6$. We compute $b=\log _{g^{m} t}\left(h g^{-a}\right)=\log _{14} 6$. We can do this again using baby step-giant step: if we start computing, we get $6,6 \cdot 14=-17$, which already occurs in our second list (which is unchanged) as $36^{2}=14^{8}$, so $14^{7}=6$, or $b=7$.

We then output $\log _{g} h=\log _{2} 3=m_{t} b+a=70-1=69$. Whew! We check our work:

$$
2^{4}=16,2^{8}=256=-47, \ldots, 2^{6} 4=1089=-22
$$

and $2(16)(-22)=2(-352)=2(-49)=-98=3$.
In fact, there are (much) better discrete logarithm algorithms that apply to \mathbb{F}_{p}^{*} (p prime) (and other similar multiplicative groups). However, on groups coming from (general) elliptic curves nothing essentially better than baby step-giant step or Pollig-Hellman is known.

Conclusion: for a pair G, g to be secure for use in a discrete logarithm-based cryptosystem, it is desirable that the number $m=\operatorname{ord}(g)$ has a large prime factor. There are three methods for construction G, g, m.
(1) The Mersenne-prime method: Pick p prime such that $2^{p}-1$ is prime, pick $f \in \mathbb{F}_{2}[X]$ irreducible of degree p, and use $G=\mathbb{F}_{2^{p}}^{*}, \mathbb{F}_{2^{p}}=\mathbb{F}_{2}[X] /(f)$, $g=X, m=2^{p}-1$. (Can also use p with $2^{p}-1$ prime up to a few small factors.) We have the following amazing fact:
Fact. If ℓ is a prime number, $2^{\ell}-1$ also prime, and $X^{\ell}+X+1 \in \mathbb{F}_{2}[X]$ irreducible, then $X^{2^{\ell}}+X+1$ is irreducible in $\mathbb{F}_{2}[X]$.

Therefore with $\ell=2,2^{2}-1=3$ is prime so $X^{2}+X+1$ is irreducible; now with $\ell=3,2^{3}-1=7$ is prime, so $X^{3}+X+1$ is irreducible, continuing on with $2^{7}=127$ and $2^{127}-1=170141183460469231731687303715884105727$ prime, we find that $X^{17 \ldots 27}+X+1$ is irreducible!
(2) The $k r+1$ method: Pick a large prime r, pick a small k such that $k r+1$ has no small prime factors (so, e.g. we insist $k \equiv 0(\bmod 2), k \not \equiv-r^{-1}$ $(\bmod 3)$, and so on). Test whether $2^{k} \not \equiv 1(\bmod k r+1), 2^{k r} \equiv 1(\bmod k r+$ $1)$. If not, try another k, and if yes, then take $p=k r+1$, which is prime if $k \leq r$, and $G=\mathbb{F}_{p}^{*}, g=2^{k}$, and $m=r$.
Fact. If r is a prime number and $k \in \mathbb{Z}, 0<k \leq r$. Put $p=k r+1$. Then p is prime if and only if there exists $a \in \mathbb{Z}$ such that $a^{k} \not \equiv 1(\bmod p)$, and $a^{k r} \equiv 1(\bmod p)$.
(3) Elliptic curves. To be discussed in the next lecture.

