
DISCRETE LOGARITHM (CONTINUED)

MATH 195

An example

Here is a baby example of a Diffie-Hellman exchange. Recall A picks an integer a
(and keeps it secret), computes ga, and sends ga to B. Similarly, B picks an integer
b (and keeps it secret), computes gb, and sends gb to A. A computes h = (gb)a ∈ G,
B computes h = (ga)b ∈ G, and h is the common secret key. E given G, g, ga, gb

hopefully cannot compute gab.
Take G = F∗

32, F32 = F2[X]/(X5 + X2 + 1), g = 00010 = X is a primitive root.
Note that F32 6= Z/32Z!

A picks a = 4, ga = X4 = 10000; B picks b = 5, gb = X5 = X2 +1 = 00101. We
have h = (00101)4 = ((00101)2)2 = (10001)2 by the freshperson’s dream, and this
is 100000001. We reduce this against X5 +X2 +1 = 100101 and get the remainder
01100 = X3 + X2:

1 0 0 0 0 0 0 0 1
1 0 0 1 0 1

1 0 0 1 0 1
0 1 1 0 0

In the same manner, we verify that (10000)5 = 01100 as well.

ElGamal

Now we describe the cryptosystem of Taher ElGamal (1985) based on G, g.
We have P = G, C = G × G, and let R = {1, 2, . . . ,m − 1} be the space of

random numbers. Prior to all communication, B picks an integer b (and keeps it
secret) and makes gb public. This is the public key.

Suppose A wants to send a message x to B, where we assume x ∈ G. A picks an
integer a (and keeps it secret) and she sends ga and x · (gb)a. This is the encryption
map:

K × P ×R E−→ C

(k = gb, x, a) 7→ Ek,a(x) = (ga, x(gb)a).

B recovers x by computing

x · (gb)a((ga)b)−1 = x.

Decryption can be described as:

K × C D−→ P

(k = gb, (f, y)) 7→ Dk(f, y) = y · (f b)−1

This is some of the material covered April 18–23, in Math 195: Cryptography, taught by
Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

1



2 MATH 195

Example. Let G = F∗
32 as above, g = X = 00010. Take b = 5, k = gb = 00101. Let

us send the message x = 10101, a = 4. A sends to B: ga = 100000 together with

x(gb)a = (10101) · (01101) = 00111.

B computes
(00111) · (10000)−5.

We cheat a little: 10000 = X4 so (10000)−5 = X−20. We have X31 = 1 since
#F∗

32 = 31, so X−20 = X11 = 100000000000, which reduces to 00111, hence

(00111) · (00111) = (00111)2 = 10101

by the freshperson’s dream, which is the correct message.

The problem faced by E: Knowing G, g, gb, ga, xgab but not b, a, she wants
to compute x. We compare this to the previous problem faced by E (in Diffie-
Hellman): knowing G, g, ga, gb, she wants to compute gab. It is clear that the
ability to solve one of these problems is equivalent to the ability to solve the other
(if you can compute x knowing xgab, you can divide to get gab, and if you can
compute gab knowing xgab, you can divide to get x).

One possible improvement: send ga once and for all.

Algorithms for Computing Discrete Logarithms

Recall that the discrete logarithm problem given a group G and an element
g ∈ G is the problem of finding logg h upon input h. Recall logg h = i if h = gi

(i ∈ Z/mZ, m = ord(g)), and logg h is undefined if h 6∈ 〈g〉.

Method 1 (Complete enumeration). Compute g0 = 1, g1 = g, g2 = g · g,
g3 = g · g2, . . . , gn+1 = g · gn until you encounter h. If you find gn = h then
n = logg h. If before finding h you find gm = 1, then h 6∈ 〈g〉. This algorithm
is naive, and takes time m/2 ∼ m operations in G, which in this case are all
multiplications.

This is fast for small m, and slow for large m.

Method 2 (Baby step-giant step). Pick a positive integer M with M2 ≥ m =
ord(g), e.g. d

√
me (or the squareroot of any upper bound on the order of g or of

the group will work).
Compute h, h · g, h · g2, . . . , h · gM−1 (the baby steps) and gM , g2M , . . . , gM2

(the
giant steps). Note that we step by 1 in g for the baby steps and by M in g for the
giant steps. We check whether these two sequences have a member in common. If
so, then h ·gi = gjM , so h = gjM−i and logg h = jM − i. If they do not, then logg h
doesn’t exist.

Example. Let G = F∗
p, p = 29, g = 2, h = 3. We take M = d

√
29e = 6. We

compute the baby steps

3, 6, 12, 24 = −5,−10,−20 = 9

(notice that we double every time) and the giant steps

26 = 6, 6 · 6 = 7, 13, . . .

but we see already that 6 is in common to both of these lists, so 26 = 3 · 2 in F29,
so 3 = 25 in F29.



DISCRETE LOGARITHM (CONTINUED) 3

Notice that we must compare two lists. If one does this naively (by comparing
every two pairs of elements), then one requires time O(M2). However, by keeping
the list sorted (using a quicksort algorithm or some such), then the time required
is O(M) (or perhaps slightly faster) with space O(M).

Here is a proof that if logg h exists, the algorithm will find it. Say h = ga,
0 < a ≤ m. Then a ≤ M2, so the least multiple jM of M that is ≥ a is ≤ M2, so
0 < j ≤ M . Write jM = a + i. Then i ≥ 0 and i < M (otherwise (j − 1)M ≥ a,
contradicting the choice of j). Hence

hgi = gagi = ga+i = gjM

so the sequences intersect, and the algorithm finds the logarithm.
If you want to find the least positive a with h = ga, pick j minimal such that

gjM is in the first sequence and given j, pick i maximal such that gjM = hgi.
Applying this method to h = 1, it will find the least positive a with ga = 1, in other
words, it will determine m.

If G is not required to be abelian, it may be wise to first test whether hg = gh.
If hg 6= gh, then logg h does not exist! (If it did, and h = ga, then hg = gag =
ga+1 = gh.) If hg = gh, then 〈g, h〉 is an abelian subgroup of G, so it is enough to
have crytographic systems built upon abelian groups in some sense.

Method 3 (Pohlig-Hellman). The input: G, g,m = ord(g), m = m1m2 . . .mt,
mi ∈ Z>0 positive integers. It is important to know the order of g and a factoriza-
tion of this order. The output is logg h, with time “dominated by” the quantity

max{
√

m1,
√

m2, . . . ,
√

mt}.

(We are using the following fact from algebra: we have 〈1〉 ⊂ 〈gmt〉 ⊂ 〈g〉, where
now gmt has order m′ = m/mt, so we may compute the logarithm in a smaller
group.)

Here is the algorithm, by steps:
(1) Compute m′ = m1m2 . . .mt−1 = m/mt.
(2) Use the baby step-giant step method (or complete enumeration) to find

a = loggm′ hm′
. If it doesn’t exist, then logg h doesn’t exist either, and

the algorithm stops. [Note: h = ga, where a is taken modulo m, becomes
hm′

= (gm′
)a, where now a is taken modulo mt.]

(3) Compute hg−a. If it is equal to 1, then we are done at this stage: h = ga.
(4) Use the Pohlig-Hellman method with input

G, gmt , m′ = m1m2 . . .mt−1, hg−a,

to compute b = loggmt (hg−a) (in time essentially max{√m1, . . . ,
√

mt−1}).
Output logg h = mtb + a if b exists, and if it does not, then the logg h does
not exist either.

The correctness of this method relies on the following claim:

Claim. We have as sets {x ∈ 〈g〉 : xm′
= 1} = 〈gmt〉.

Proof. Suppose that x = gc with xm′
= gcm′

= 1. Then cm′ is divisible by
m = m′mt, so

cm′

m
=

c

mt



4 MATH 195

are both integers, and hence c is divisible by mt. This proves one inclusion, and
the other is clear: any element gmtd is a power of g with (gmtd)m′

= gmd = 1. �

Example. Given G, and g ∈ G, m = 〈g〉 = m1m2 . . .mt, t ≥ 1, and h ∈ G, we com-
pute logg h by reducing the problem to a computation involving m′ = m1 . . .mt−1,
hm′

, gm′
.

Take G = F∗
101, with g = 2 ∈ G, m = 100 = 10 · 10, h = 3. We have m′ = 10,

and we compute

h′ = hm′
= 310 = ((32)2 · 3)2 = (−60)2 = 3600 = −36.

We also compute g′ = gm′
= 210 = 1024 = 14 = gm′

. Note that since g has order
100 (it is a primitive root), gm′

has order 10.
Now we compute loggm′ hm′

using the baby step-giant method. We need M2 ≥
mt, so M = 4. We compute h′, h′g′, . . . , (h′)(g′)M−1, which is the sequence

−36,−36 · 14 = 1, 1 · 14 = 14, 14 · 14 = −6.

Now we compare it to the sequence (g′)M , (g′)2M , . . . , (g′)M2
, and get

144 = 36, 362 = −17,−17 · 36 = −6

so bingo (!): we see that 1412 = −36 · 143, so −36 = 149. In other words,

a = logg′ h′ = log14(−36) = 3M − 3 = 9.

Of course, since −36 · 14 = 1, we know already −36 = 14−1 = 149, since 14
has order 10. In fact, it is easier to work with a = −1, since we only care about a
modulo 10.

Now we compute hg−a = 3 · 2−(−1) = 6 6= 1. We compute gmt = 210 = 14, and
m′ = 10, and hg−a = 6. We compute b = loggmt (hg−a) = log14 6. We can do this
again using baby step-giant step: if we start computing, we get 6, 6 · 14 = −17,
which already occurs in our second list (which is unchanged) as 362 = 148, so
147 = 6, or b = 7.

We then output logg h = log2 3 = mtb + a = 70− 1 = 69. Whew! We check our
work:

24 = 16, 28 = 256 = −47, . . . , 264 = 1089 = −22

and 2(16)(−22) = 2(−352) = 2(−49) = −98 = 3.

In fact, there are (much) better discrete logarithm algorithms that apply to F∗
p

(p prime) (and other similar multiplicative groups). However, on groups coming
from (general) elliptic curves nothing essentially better than baby step-giant step
or Pollig-Hellman is known.

Conclusion: for a pair G, g to be secure for use in a discrete logarithm-based
cryptosystem, it is desirable that the number m = ord(g) has a large prime factor.
There are three methods for construction G, g, m.

(1) The Mersenne-prime method: Pick p prime such that 2p − 1 is prime, pick
f ∈ F2[X] irreducible of degree p, and use G = F∗

2p , F2p = F2[X]/(f),
g = X, m = 2p − 1. (Can also use p with 2p − 1 prime up to a few small
factors.) We have the following amazing fact:

Fact. If ` is a prime number, 2` − 1 also prime, and X` + X + 1 ∈ F2[X]
irreducible, then X2`

+ X + 1 is irreducible in F2[X].



DISCRETE LOGARITHM (CONTINUED) 5

Therefore with ` = 2, 22−1 = 3 is prime so X2+X+1 is irreducible; now
with ` = 3, 23− 1 = 7 is prime, so X3 + X + 1 is irreducible, continuing on
with 27 = 127 and 2127 − 1 = 170141183460469231731687303715884105727
prime, we find that X17...27 + X + 1 is irreducible!

(2) The kr + 1 method: Pick a large prime r, pick a small k such that kr + 1
has no small prime factors (so, e.g. we insist k ≡ 0 (mod 2), k 6≡ −r−1

(mod 3), and so on). Test whether 2k 6≡ 1 (mod kr+1), 2kr ≡ 1 (mod kr+
1). If not, try another k, and if yes, then take p = kr + 1, which is prime
if k ≤ r, and G = F∗

p, g = 2k, and m = r.

Fact. If r is a prime number and k ∈ Z, 0 < k ≤ r. Put p = kr + 1. Then
p is prime if and only if there exists a ∈ Z such that ak 6≡ 1 (mod p), and
akr ≡ 1 (mod p).

(3) Elliptic curves. To be discussed in the next lecture.


