RIJNDAEL CIPHER (CONTINUED): DISCUSSION

MATH 195

First, we discuss the map M. Recall that we define the map

$$
\begin{aligned}
M: \mathbb{F}_{256}^{4} & \rightarrow \mathbb{F}_{256}^{4} \\
M(g) & \equiv c \cdot g \quad\left(\bmod Y^{4}+1\right)
\end{aligned}
$$

where we identify the word space \mathbb{F}_{256}^{4} with the set of polynomials

$$
\begin{aligned}
\mathbb{F}_{256}^{4} & =\left\{g \in \mathbb{F}_{256}[Y]: \operatorname{deg} g<4\right\} \\
\left(a_{0}, a_{1}, a_{2}, a_{3}\right) & =a_{0}+a_{1} Y+a_{2} Y^{2}+a_{3} Y^{3}
\end{aligned}
$$

Here we let $c \in \mathbb{F}_{256}^{4}$ be

$$
c=(X, 1,1, X+1)=X+Y+Y^{2}+(X+1) Y^{3}
$$

where

$$
\mathbb{F}_{256}=\mathbb{F}_{2}[X] /\left(X^{8}+X^{4}+X^{3}+X+1\right)
$$

M has the desirable properties of efficiency and diffusion. Writing this map out, we have

$$
c \cdot g \equiv\left(\sum_{i=0}^{3} c_{i} Y^{i}\right)\left(\sum_{j=0}^{3} a_{j} Y^{j}\right) \quad\left(\bmod Y^{4}+1\right)
$$

which is

$$
\sum_{\ell=0}^{3}\left(\sum_{i+j \equiv \ell \bmod 4} c_{i} a_{j}\right) Y^{\ell}
$$

We want this multiplication to be efficient, so we want to pick the coefficients so that this multiplication is easy: hence we require that they (as polynomials in X) be linear. Then we have

$$
X\left(\sum_{i=0}^{7} b_{i} X^{i}\right)=\sum_{i=0}^{7} b_{i} X^{i+1}=\sum_{j=1}^{7} b_{j-1} X^{j}+b_{7}\left(X^{4}+X^{3}+X+1\right)
$$

Part of the secret of this choice of c, then, is that not only do the coefficients have low degree, but the sum of the coefficients is

$$
X+1+1+(X+1)=1
$$

It is a homework problem to investigate the consequences of this magical condition.
The diffusion requirement can be put as follows: if w and w^{\prime} are two words differing in just one byte, then $M(w)$ and $M\left(w^{\prime}\right)$ differ in all four bytes. Similarly, if w and w^{\prime} differ in two, three, or four bytes, respectively, then $M(w)$ and $M\left(w^{\prime}\right)$ differ in at least three, at least two, or at least one byte, respectively.

[^0]Definition. If w, w^{\prime} are two words, then the Hamming distance $d\left(w, w^{\prime}\right)$ is the number of j s such that the j th byte of w is not equal to the j th byte of w^{\prime}.

The Hamming weight $W(w)=d(w, 0)$, i.e. $d\left(w, w^{\prime}\right)=W\left(w+w^{\prime}\right)$ (we are dealing with bytes). $W(w)$ is the number of nonzero bytes of w.

We see that $d\left(w, w^{\prime \prime}\right) \leq d\left(w, w^{\prime}\right)+d\left(w^{\prime}, w^{\prime \prime}\right), d\left(w, w^{\prime}\right)=d\left(w^{\prime}, w\right)$, and $d\left(w, w^{\prime}\right)=$ 0 if and only if $w=w^{\prime}$. We require for Rijndael that for all $w \neq w^{\prime}$,

$$
d\left(w, w^{\prime}\right)+d\left(M(w), M\left(w^{\prime}\right)\right) \geq 5
$$

Equivalently, for all $v=w+w^{\prime} \neq 0$, we insist that
$W\left(w+w^{\prime}\right)+W\left(M(w)+M\left(w^{\prime}\right)\right)=W\left(w+w^{\prime}\right)+W\left(M\left(w+w^{\prime}\right)\right)=W(v)+W(M(v)) \geq 5$.
Theorem. Let

$$
c=c_{0}+c_{1} Y+c_{2} Y^{2}+c_{3} Y^{3} \in\left(\mathbb{F}_{256}[Y] /\left(Y^{4}+1\right)\right)^{*}
$$

have inverse $d=d_{0}+d_{1} Y+d_{2} Y^{2}+d_{3} Y^{3}$. Define

$$
M:\left(\mathbb{F}_{256}[Y] /\left(Y^{4}+1\right)\right)^{*} \rightarrow\left(\mathbb{F}_{256}[Y] /\left(Y^{4}+1\right)\right)^{*}
$$

by $M(g)=c \cdot g$. Then M satisfies the condition

$$
W(v)+W(M(v)) \geq 5
$$

for all $v \neq 0$ if and only if the following conditions are satisfied:
(i) all $c_{i} \neq 0$;
(ii) the elements $c_{1} / c_{0}, c_{2} / c_{1}, c_{3} / c_{2}, c_{0} / c_{3}$ of \mathbb{F}_{256} are pairwise distinct;
(iii) the elements $c_{2} / c_{0}, c_{3} / c_{1}, c_{0} / c_{2}, c_{1} / c_{3}$ of \mathbb{F}_{256} are pairwise distinct;
(iv) the same conditions are true for c_{j} replaced by d_{j}.

This theorem is not deep. It imposes certain limitations on your coefficients which are satisfied by the Rijndael cipher!

[^0]: This is some of the material covered April 9, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

