RIJNDAEL CIPHER

MATH 195

For any cryptographic system, we need to define encryption and decryption functions

$$
\begin{aligned}
E, D: \mathcal{K} \times \mathcal{P} & \rightarrow \mathcal{C} \\
E:(k, x) & \mapsto E_{k}(x) \\
D:(k, x) & \mapsto D_{k}(x)
\end{aligned}
$$

such that $D_{k} E_{k}=\operatorname{id}_{\mathcal{P}}$, so that these are inverse to each other. Recall \mathcal{K} is the key space, \mathcal{P} is the plaintext message space, and \mathcal{C} is the ciphertext message space.

We take $\mathcal{P}=\mathcal{C}$ equal to the state space $\mathcal{S}=\mathbb{F}_{2}^{32 N_{b}}$, where

$$
N_{b}=\{4,6,8\}
$$

and we shall take $N_{b}=4$ so that $\mathcal{S}=\mathbb{F}_{2}^{128}$. This is to say, \mathcal{S} is a 128-dimensional vector space over \mathbb{F}_{2}, or put another way, it consists of bit strings of length 128. Similarly, the key space is $\mathbb{F}_{2}^{32 N_{k}}$ where $N_{k} \in\{4,6,8\}$; we will take $N_{k}=4$ as well.

The letters $\tau_{s}, \sigma, \beta, \mu$ are permutations of \mathcal{S} from which E_{k} and D_{k} are built up.
For each $s \in \mathcal{S}$, the function

$$
\tau_{s}: \mathcal{S} \rightarrow \mathcal{S}
$$

is defined by

$$
\tau_{s}(x)=x+s
$$

hence τ_{s} is 'translation by s ', called the AddRoundKey transformation.
A state (an element of \mathcal{S}) is pictured as a $4 \times N_{b}$ matrix with entries that consist of 1 byte (8 bits) each, e.g.
$\left(\begin{array}{llll}01010010 & 01001100 & 10101011 & 01110010 \\ 01010101 & 11010101 & 11111111 & 00110100 \\ 11011010 & 10110101 & 11010001 & 10111011 \\ 10111010 & 10111101 & 01110110 & 00000001\end{array}\right)$
where we read the bytes from top to bottom, then left to right:

$$
010100100101010111011010 \ldots 1011101100000001
$$

in the above example. (Recall $N_{b}=4$.) The set of all bytes is \mathbb{F}_{2}^{8}, and it is identified with the field

$$
\mathbb{F}_{256}=\mathbb{F}_{2}[X] /\left(X^{8}+X^{4}+X^{3}+X+1\right),
$$

by identifying $\left(b_{7} b_{6} \ldots b_{1} b_{0}\right)$ with the polynomial

$$
b_{7} X^{7}+b_{6} X^{6}+\cdots+b_{1} X+b_{0} \in \mathbb{F}_{256}
$$

This gives us a multiplication on 8 bit strings. Therefore \mathcal{S} is now the set of 4×4 matrices with entries from \mathbb{F}_{256}.

[^0]The map $\beta: \mathcal{S} \rightarrow \mathcal{S}$ is called the ByteSub transformation, and it is defined by

$$
\beta\left(\begin{array}{cccc}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right)=\left(\begin{array}{ccc}
B\left(a_{0,0}\right) & \ldots & B\left(a_{0,3}\right) \\
\vdots & \ddots & \vdots \\
B\left(a_{3,0}\right) & \ldots & B\left(a_{3,3}\right)
\end{array}\right) .
$$

where $B: \mathbb{F}_{256} \rightarrow \mathbb{F}_{256}$ is some dreadful permutation to be defined later.
The map $\sigma: \mathcal{S} \rightarrow \mathcal{S}$ is the ShiftRow transformation: σ shifts the i th row $(i=$ $0,1,2,3$) cyclically by i positions to the left:

$$
\sigma\left(\begin{array}{llll}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right)=\left(\begin{array}{llll}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,0} \\
a_{2,2} & a_{2,3} & a_{2,0} & a_{2,1} \\
a_{3,3} & a_{3,0} & a_{3,1} & a_{3,2}
\end{array}\right)
$$

In other words,

$$
\left.\sigma\left(\left(a_{i, j}\right)\right)_{i, j=0, \ldots, 3}\right)=\left(a_{i, i+j \bmod 4}\right)_{i, j=0, \ldots, 3}
$$

The map $\mu: \mathcal{S} \rightarrow \mathcal{S}$ is the MixColumn operation defined by

$$
\mu\left(\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
a_{0} & a_{1} & a_{2} & a_{3} \\
\mid & \mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
M a_{0} & M a_{1} & M a_{2} & M a_{3} \\
\mid & \mid & \mid & \mid
\end{array}\right)
$$

where a_{i} are vectors, $a_{i} \in \mathbb{F}_{256}^{4}$, and where $M: \mathbb{F}_{256}^{4} \rightarrow \mathbb{F}_{256}^{4}$ is a linear map (over \mathbb{F}_{256}, so M can be given by a 4×4 matrix with coefficients from \mathbb{F}_{256}).

The definition of M : identify \mathbb{F}_{256}^{4} (the word space: 1 byte is 8 bits, 1 word is 4 bytes, 1 state is N_{b} words) with $\mathbb{F}_{256}[Y] /\left(Y^{4}+1\right)$. The elements of $\mathbb{F}_{256}[Y] /\left(Y^{4}+1\right)$ are represented by polynomials $b_{3} Y^{3}+b_{2} Y^{2}+b_{1} Y+b_{0}$, where $b_{i} \in \mathbb{F}_{256}$. Define

$$
M: \mathbb{F}_{256}[Y] /\left(Y^{4}+1\right) \rightarrow \mathbb{F}_{256}[Y] /\left(Y^{4}+1\right)
$$

by

$$
M(w)=c \cdot w \quad\left(\bmod Y^{4}+1\right)
$$

where

$$
c=03 Y^{3}+01 Y^{2}+01 Y+02 \in \mathbb{F}_{256}[Y] /\left(Y^{4}+1\right)
$$

where $03=00000011=X+1$ in \mathbb{F}_{256}, and similarly $01=00000001=1 \in \mathbb{F}_{256}$, $02=00000010=X \in \mathbb{F}_{256}$.

Note that $c(1)=1$, so since $Y^{4}+1=0, c^{4}=1$.
The key space $\mathcal{K}=\mathcal{S}$. Key expansion transforms a given key $k \in \mathcal{K}$ into a sequence $k_{0}(=k), k_{1}, \ldots, k_{10}$ "round key" that belong to \mathcal{S}, to be explained.

The formula for E_{k}, given as maps, is:

$$
E_{k}=\tau_{k_{10}} \sigma \beta \tau_{k_{9}} \mu \sigma \beta \ldots \tau_{k_{2}} \mu \sigma \beta \tau_{k_{1}} \mu \sigma \beta \tau_{k_{0}} .
$$

Notice that we do not have a final application of μ : since μ is a known map, the additional application would be wasteful, as μ and τ commute $\left(\mu \tau_{s}=\tau_{\mu(s)} \mu\right)$ any cryptanalyst could easily undo this map.

To decrypt, we apply the inverse of these maps in the opposite order, using commutation relations:
$D_{k}=E_{k}^{-1}=\tau_{k_{0}} \sigma^{-1} \beta^{-1} \tau_{\mu^{-1}\left(k_{1}\right)} \mu^{-1} \sigma^{-1} \beta^{-1} \tau_{\mu^{-1}\left(k_{2}\right)} \mu^{-1} \ldots \tau_{\mu^{-1}\left(k_{9}\right)} \mu^{-1} \sigma^{-1} \beta^{-1} \tau_{k_{10}}$.
Note that there would be asymmetry in the application of the maps if we applied an additional μ to conclude E_{k}, as we would then have to apply μ^{-1} at the beginning of D_{k}.

There are two maps still left to define. First, we define $A:\left\{f \in \mathbb{F}_{2}[X]: \operatorname{deg} f<\right.$ $8\}$ to itself by

$$
A(f) \equiv\left(X^{4}+X^{3}+X^{2}+X+1\right) f+\left(X^{6}+X^{5}+X+1\right) \quad\left(\bmod X^{8}+1\right)
$$

Note that in $\mathbb{F}_{2}[X], X^{8}+1$ is not irreducible, so $\mathbb{F}_{2}[X] /\left(X^{8}+1\right)$ is not a field! Indeed, by the freshperson's dream $X^{8}+1=(X+1)^{8}$. (We say ' A ' for affine, since it is a homomorphism followed by a translation.)

In fact, A^{4} is the identity map, $A^{-1}=A^{3}$, and

$$
A^{-1}(f) \equiv\left(X^{6}+X^{3}+X\right) f+\left(X^{2}+1\right) \quad\left(\bmod X^{8}+1\right)
$$

Define $B: \mathbb{F}_{256} \rightarrow \mathbb{F}_{256}$ by

$$
B(a)= \begin{cases}A\left(a^{-1}\right), & a \neq 0, a^{-1} \text { computed in } \mathbb{F}_{256} \\ A(0), & a=0\end{cases}
$$

Note: $B(a)=A\left(a^{254}\right)$, where a^{254} is computed in \mathbb{F}_{256}, and B is the composition of A and the 'inversion' map. This is the only nonlinear ingredient in the entire scheme.

Finally, we must give key expansion: Given a key $k \in \mathcal{K}=\mathcal{S}$, we produce 11 round keys $k_{0}, \ldots, k_{10} \in \mathcal{S}$. Write

$$
k=\left(\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
w_{0} & w_{1} & w_{2} & w_{3} \\
\mid & \mid & \mid & \mid
\end{array}\right)
$$

We expand k into

$$
k=\left(\begin{array}{cccccccc}
\mid & \mid & \mid & \mid & & \mid & \mid & \mid \\
w_{0} & w_{1} & w_{2} & w_{3} & \ldots & w_{41} & w_{42} & w_{43} \\
\mid & \mid & \mid & \mid & & \mid & \mid & \mid
\end{array}\right)
$$

so that

$$
k_{i}=\left(\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
w_{4 i} & w_{4 i+1} & w_{4 i+2} & w_{4 i+3} \\
\mid & \mid & \mid & \mid
\end{array}\right)
$$

where

$$
w_{j}=\left\{\begin{array}{lll}
w_{j-1}+w_{j-4}, & j \not \equiv 0 & (\bmod 4) \\
\gamma\left(w_{j-1}\right)+w_{j-4}, & j \equiv 0 & (\bmod 4)
\end{array}\right.
$$

and

$$
\gamma\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
B(b) \\
B(c) \\
B(d) \\
B(a)
\end{array}\right)+\left(\begin{array}{c}
X^{(j-4) / 4} \bmod m(X) \\
0 \\
0 \\
0
\end{array}\right)
$$

and $m(X)=X^{8}+X^{4}+X^{3}+X+1$.
In fact, $B: \mathbb{F}_{256} \rightarrow \mathbb{F}_{256}$ for all $a \in \mathbb{F}_{256}$ one has
$B(a)=63+8 \mathrm{f} a^{127}+\mathrm{b} 5 a^{191}+01 a^{223}+\mathrm{f} 4 a^{239}+25 a^{247}+\mathrm{f} 9 a^{251}+09 a^{253}+05 a^{254}$
where the coefficients are written in hexadecimal (e.g. $63=01100011$). Note that this has all 9 terms (there is no easy algebraic relation).

[^0]: This is some of the material covered April 2-4, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math. berkeley.edu.

