
RIJNDAEL CIPHER

MATH 195

For any cryptographic system, we need to define encryption and decryption
functions

E,D : K × P → C
E : (k, x) 7→ Ek(x)

D : (k, x) 7→ Dk(x)

such that DkEk = idP , so that these are inverse to each other. Recall K is the key
space, P is the plaintext message space, and C is the ciphertext message space.

We take P = C equal to the state space S = F32Nb
2 , where

Nb = {4, 6, 8},
and we shall take Nb = 4 so that S = F128

2 . This is to say, S is a 128-dimensional
vector space over F2, or put another way, it consists of bit strings of length 128.
Similarly, the key space is F32Nk

2 where Nk ∈ {4, 6, 8}; we will take Nk = 4 as well.
The letters τs, σ, β, µ are permutations of S from which Ek and Dk are built up.
For each s ∈ S, the function

τs : S → S
is defined by

τs(x) = x + s;
hence τs is ‘translation by s’, called the AddRoundKey transformation.

A state (an element of S) is pictured as a 4×Nb matrix with entries that consist
of 1 byte (8 bits) each, e.g.

01010010 01001100 10101011 01110010
01010101 11010101 11111111 00110100
11011010 10110101 11010001 10111011
10111010 10111101 01110110 00000001


where we read the bytes from top to bottom, then left to right:

01010010 01010101 11011010 . . . 10111011 00000001

in the above example. (Recall Nb = 4.) The set of all bytes is F8
2, and it is identified

with the field
F256 = F2[X]/(X8 + X4 + X3 + X + 1),

by identifying (b7b6 . . . b1b0) with the polynomial

b7X
7 + b6X

6 + · · ·+ b1X + b0 ∈ F256.

This gives us a multiplication on 8 bit strings. Therefore S is now the set of 4× 4
matrices with entries from F256.

This is some of the material covered April 2–4, in Math 195: Cryptography, taught by Hendrik

Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

1

2 MATH 195

The map β : S → S is called the ByteSub transformation, and it is defined by

β


a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

 =

B(a0,0) . . . B(a0,3)
...

. . .
...

B(a3,0) . . . B(a3,3)

 .

where B : F256 → F256 is some dreadful permutation to be defined later.
The map σ : S → S is the ShiftRow transformation: σ shifts the ith row (i =

0, 1, 2, 3) cyclically by i positions to the left:

σ


a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

 =


a0,0 a0,1 a0,2 a0,3

a1,1 a1,2 a1,3 a1,0

a2,2 a2,3 a2,0 a2,1

a3,3 a3,0 a3,1 a3,2

 .

In other words,
σ((ai,j))i,j=0,...,3) = (ai,i+j mod 4)i,j=0,...,3.

The map µ : S → S is the MixColumn operation defined by

µ

 | | | |
a0 a1 a2 a3

| | | |

 =

 | | | |
Ma0 Ma1 Ma2 Ma3

| | | |


where ai are vectors, ai ∈ F4

256, and where M : F4
256 → F4

256 is a linear map (over
F256, so M can be given by a 4× 4 matrix with coefficients from F256).

The definition of M : identify F4
256 (the word space: 1 byte is 8 bits, 1 word is 4

bytes, 1 state is Nb words) with F256[Y]/(Y 4+1). The elements of F256[Y]/(Y 4+1)
are represented by polynomials b3Y

3 + b2Y
2 + b1Y + b0, where bi ∈ F256. Define

M : F256[Y]/(Y 4 + 1) → F256[Y]/(Y 4 + 1)

by
M(w) = c · w (mod Y 4 + 1)

where
c = 03Y 3 + 01Y 2 + 01Y + 02 ∈ F256[Y]/(Y 4 + 1)

where 03 = 00000011 = X + 1 in F256, and similarly 01 = 00000001 = 1 ∈ F256,
02 = 00000010 = X ∈ F256.

Note that c(1) = 1, so since Y 4 + 1 = 0, c4 = 1.
The key space K = S. Key expansion transforms a given key k ∈ K into a

sequence k0(= k), k1, . . . , k10 “round key” that belong to S, to be explained.
The formula for Ek, given as maps, is:

Ek = τk10σβτk9µσβ . . . τk2µσβτk1µσβτk0 .

Notice that we do not have a final application of µ: since µ is a known map, the
additional application would be wasteful, as µ and τ commute (µτs = τµ(s)µ) any
cryptanalyst could easily undo this map.

To decrypt, we apply the inverse of these maps in the opposite order, using
commutation relations:

Dk = E−1
k = τk0σ

−1β−1τµ−1(k1)µ
−1σ−1β−1τµ−1(k2)µ

−1 . . . τµ−1(k9)µ
−1σ−1β−1τk10 .

Note that there would be asymmetry in the application of the maps if we applied an
additional µ to conclude Ek, as we would then have to apply µ−1 at the beginning
of Dk.

RIJNDAEL CIPHER 3

There are two maps still left to define. First, we define A : {f ∈ F2[X] : deg f <
8} to itself by

A(f) ≡ (X4 + X3 + X2 + X + 1)f + (X6 + X5 + X + 1) (mod X8 + 1).

Note that in F2[X], X8 + 1 is not irreducible, so F2[X]/(X8 + 1) is not a field!
Indeed, by the freshperson’s dream X8 +1 = (X +1)8. (We say ‘A’ for affine, since
it is a homomorphism followed by a translation.)

In fact, A4 is the identity map, A−1 = A3, and

A−1(f) ≡ (X6 + X3 + X)f + (X2 + 1) (mod X8 + 1).

Define B : F256 → F256 by

B(a) =

{
A(a−1), a 6= 0, a−1 computed in F256;
A(0), a = 0.

Note: B(a) = A(a254), where a254 is computed in F256, and B is the composition
of A and the ‘inversion’ map. This is the only nonlinear ingredient in the entire
scheme.

Finally, we must give key expansion: Given a key k ∈ K = S, we produce 11
round keys k0, . . . , k10 ∈ S. Write

k =

 | | | |
w0 w1 w2 w3

| | | |


We expand k into

k =

 | | | | | | |
w0 w1 w2 w3 . . . w41 w42 w43

| | | | | | |


so that

ki =

 | | | |
w4i w4i+1 w4i+2 w4i+3

| | | |


where

wj =

{
wj−1 + wj−4, j 6≡ 0 (mod 4),
γ(wj−1) + wj−4, j ≡ 0 (mod 4),

and

γ


a
b
c
d

 =


B(b)
B(c)
B(d)
B(a)

 +


X(j−4)/4 mod m(X)

0
0
0


and m(X) = X8 + X4 + X3 + X + 1.

In fact, B : F256 → F256 for all a ∈ F256 one has

B(a) = 63+ 8fa127 + b5a191 + 01a223 + f4a239 + 25a247 + f9a251 + 09a253 + 05a254

where the coefficients are written in hexadecimal (e.g. 63=01100011). Note that
this has all 9 terms (there is no easy algebraic relation).

