
FINITE FIELDS (CONTINUED): HOW TO CONSTRUCT

MATH 195

[For more on finite fields, consult the treatise by Lidl and Neiddereiter entitled
Finite Fields.]

In our dictionary,

Fp[X]/(f) = {g : g = 0 or deg g < deg f}

with usual adiition and multiplication modulo f corresponds to

Z/nZ = {0, 1, . . . , n− 1}

with addition and multiplication modulo n.
For example, if f(X) = X8 + X4 + X3 + X + 1 and b = 00010000 = X4 ∈

F2[X]/(f), then b2 = X8 = X4 + X3 + X + 1 = 00011011 by doing long division
and reducing modulo f .

Note that for any prime p and polynomial f ∈ Fp[X], there is a map

Fp[X] → Fp[X]/(f)
g 7→ g mod f

preserving addition and multiplication, analogous to the map Z → Z/nZ. Also,
g and h have the same image if and only if they have the same remainder upon
division by f , which is to say f divides g − h.

Our motivation to study these algebraic objects was to construct finite fields.
Recall that Z/nZ is a field if and only if n is prime. Analogously, Fp[X]/(f) is a
field if and only f is irreducible.

Recall that every finite field k has #k = pn = q, a prime power number of
elements. Counting, we see that #Fp[X]/(f) = pdeg f , since we have representatives
cn−1cn−2 . . . c1c0 if deg f = n.

Conclusion: To construct a finite field of pn elements, it suffices to find a (monic)
irreducible polynomial f ∈ Fp[X] of degree n:

f = Xn + an−1X
n−1 + · · ·+ a1X + a0, ai ∈ Fp.

The field is then Fp[X]/(f).
This requires storage ndlog p/ log 2e ∼ log q/ log 2, which is much better than

keeping track of tables, which we saw required storage space 2q2(log q)/(log 2)!

Example. For p = 2, n = 3, we have two choices for f : X3 +X +1 and X3 +X2 +1.
So one model for F8 is

F2[X]/(X3 + X + 1)
and another is

F2[X]/(X3 + X2 + 1).

This is some of the material covered March 19–21, in Math 195: Cryptography, taught by
Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.
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Even though the addition structure is the same in the field, when multiplying
we reduce modulo different f . These are, by the theorem, isomorphic as fields,
meaning that there is a way of matching up the elements so that the multiplication
corresponds.

It suffices to find one such polynomial, therefore. Given a prime number p and
a positive integer n, how do we quickly produce a monic irreducible polynomial
f ∈ Fp[X] of degree n? Just as in the case of the integers, random searching is
enough:

(1) Pick a random f of degree n, monic, in Fp[X].
(2) Test f for irreducibility, and iterate until answer is “yes”.

We need to discuss how fast this algorithm is (what is the analogy of the prime
number theorem for Fp[X]?) and give a fast algorithm to test a polynomial for
irreducibility.

We let

an(p) = #{f ∈ Fp[X] : f monic, irreducible, deg f = n}.
The probability of “yes” in (2) above is an(p)/pn.

From unique factorization in Fp[X] one can dedcue: for all n ≥ 1,
∑

d|n dad(p) =
pn. From this, we can obtain the closed formula:

an(p) =
1
n

∑
d|n

µ(d)pn/d

where µ(d) is defined by

µ(d) =

{
0, d is divisible by the square of a prime number;
(−1)r, d is the product of r distinct prime numbers.

Example. For example, µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1,
µ(6) = 1, and so on. Therefore

a45(p) =
1
45

(p45 − p15 − p9 + p3).

For our purposes, we have the estimate from before:

pn − 2pbn/2c

n
< an(p) ≤ pn

n
.

Therefore
1
n
− 2

p−n/2

n
<

an(p)
pn

≤ 1
n

.

Hence an(p)/pn ≈ 1/n. A random polynomial monic of degree n is irreducible with
probability ∼ 1/n, independent of p. Recall that a random positive integer near x is
prime with probability ∼ 1/ log x: the degree of a polynomial corresponds roughly
to the logarithm of an integer.

We have the following remarkable theorem:

Theorem. In Fp[X], one has

Xpn

−X =
∏

g∈Fp[X]
g monic, irreducible

(deg g)|n

g



FINITE FIELDS (CONTINUED): HOW TO CONSTRUCT 3

for all n ≥ 1.

Note, the relation ∑
d|n

dad(p) = pn

expresses that the degrees of the LHS and RHS are the same.
If k is a finite field, #k = q, then we see from the multiplicative structure of

k that αq = α. Recall that if k = Fp, where p is prime, then by Fermat’s little
theorem, for all a ∈ Z, ap ≡ a (mod p). Similarly, we will see that k = Fp[X]/(g),
where g is irreducible, with q = pdeg g, has the property that for all polynomials f ,

fpdeg g

≡ f (mod g).

As a consequence, take f = X: then

g | (Xpdeg g

−X).

By induction, we see that α = αq = (αq)q = αq2
= · · · = αqi

, so in fact

fpi deg g

≡ f (mod g).

This shows that if deg g | n, then

g | (Xpn

−X)

in Fp[X].
Now we can prove the theorem:

Proof. Since we have unique factorization in Fp[X], Xpn − X can be written as
the product of irreducible factors. Therefore for each g which is monic, irreducible,
with deg g | n, we know that g | Xpn −X, so all of those g occur, hence

Xpn

−X = h
∏
g

deg g|n

g.

We would like to show that h is trivial.
But from the relation ∑

d|n

dad(p) = pn

we count degrees on both sides and see that deg h = 0, so h is constant, but since
both sides are monic, h = 1. �

Testing for Irreducibility

Given f ∈ Fp[X], monic of degree n ≥ 1, how can we tell whether f is irreducible?
We see from the above that one necessary condition is: Xpn ≡ X (mod f). This is
something that can easily be tested. If no, then the polynomial is not irreducible.
If yes, then f | (Xpn −X) so f is a subproduct of

∏
g g as above so each irreducible

factor of f occurs only once in f and has degree dividing n.
We therefore have the following:

Theorem. Let f ∈ Fp[X] be monic of degree n ≥ 1.
(a) Suppose first n is a power of a prime number n = rt, t ≥ 1. Then: f is

irreducible if and only if

Xpn

≡ X (mod f) and Xpn/r

= Xprt−1

6≡ X (mod f).
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(b) For general n: f is irreducible if and only if

Xpn

≡ X (mod f)

and for each r | n prime,

Xpn/r

−X ∈ (Fp[X]/(f))∗,

i.e. the element Xpn/r −X is a unit modulo f .

Proof. It is clear from the above that if f is irreducible, then we have conditions
(a) and (b), respectively.

Now suppose that we have the condition in (a). We see that every irreducible
factor g must have degree dividing n = rt, so in particular unless g = f its degree
must be strictly smaller, hence divide rt−1. Therefore Xprt−1

≡ X (mod f), which
is a contradiction.

For (b), let g be an irreducible factor of f . We will show that g = f . Suppose
otherwise: then again since deg g | deg f we may assume that there is a prime
factor r such that it divides deg f = n to a higher power than deg g; in particular,
by adding degrees, we see that Xpn/r ≡ X (mod g) and g | f , so g | gcd(Xpn/r −
X, f) = 1, a contradiction. �

A word on computational complexity: by using repeated squarings as in the
case of Z/nZ, we may obtain the time for this algorithm (which requires only
powerings and computing gcd) as cn(log p)3. However, if you take advantage of the
freshperson’s dream, and use the fact that pth power can be represented as a linear
map (and hence a matrix), we can compute this in n(log p) steps: in particular, we
see that Xpn ≡ X (mod f) if and only if the matrix representing the pth power
Frobenius has nth power the identity.

An Aside

We now sketch ∑
d|n

dad(p) = pn

very briefly! We have the following equalities:

Z(t) =
∑

h∈Fp[X]
h monic

tdeg h =
∏

f monic
irreducible

1
1− tdeg f

=
∞∑

n=0

pntn =
1

1− pt
=

∞∏
d=1

1
(1− td)ad(p)

.

Now we apply the logarithmic derivative: to a power series P (t), we have λ(P ) =
P ′/P : we get

λ(1/(1− pt)) = −λ(1− pt) =
tp

1− tp
=

∞∑
n=1

pntn

and this is equal to

λ(
∏

(1− td)−ad(p)) =
∑

d

ad(p)
dtd

1− td
=

∑
d

∞∑
m=1

dad(p)tmd.
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Now compare coefficients at tn.


