FINITE FIELDS (CONTINUED): HOW TO CONSTRUCT

MATH 195

[For more on finite fields, consult the treatise by Lidl and Neiddereiter entitled Finite Fields.]

In our dictionary,

$$
\mathbb{F}_{p}[X] /(f)=\{g: g=0 \text { or } \operatorname{deg} g<\operatorname{deg} f\}
$$

with usual adiition and multiplication modulo f corresponds to

$$
\mathbb{Z} / n \mathbb{Z}=\{0,1, \ldots, n-1\}
$$

with addition and multiplication modulo n.
For example, if $f(X)=X^{8}+X^{4}+X^{3}+X+1$ and $b=00010000=X^{4} \in$ $\mathbb{F}_{2}[X] /(f)$, then $b^{2}=X^{8}=X^{4}+X^{3}+X+1=00011011$ by doing long division and reducing modulo f.

Note that for any prime p and polynomial $f \in \mathbb{F}_{p}[X]$, there is a map

$$
\begin{aligned}
\mathbb{F}_{p}[X] & \rightarrow \mathbb{F}_{p}[X] /(f) \\
g & \mapsto g \bmod f
\end{aligned}
$$

preserving addition and multiplication, analogous to the map $\mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$. Also, g and h have the same image if and only if they have the same remainder upon division by f, which is to say f divides $g-h$.

Our motivation to study these algebraic objects was to construct finite fields. Recall that $\mathbb{Z} / n \mathbb{Z}$ is a field if and only if n is prime. Analogously, $\mathbb{F}_{p}[X] /(f)$ is a field if and only f is irreducible.

Recall that every finite field k has $\# k=p^{n}=q$, a prime power number of elements. Counting, we see that $\# \mathbb{F}_{p}[X] /(f)=p^{\operatorname{deg} f}$, since we have representatives $c_{n-1} c_{n-2} \ldots c_{1} c_{0}$ if $\operatorname{deg} f=n$.

Conclusion: To construct a finite field of p^{n} elements, it suffices to find a (monic) irreducible polynomial $f \in \mathbb{F}_{p}[X]$ of degree n :

$$
f=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}, a_{i} \in \mathbb{F}_{p}
$$

The field is then $\mathbb{F}_{p}[X] /(f)$.
This requires storage $n\lceil\log p / \log 2\rceil \sim \log q / \log 2$, which is much better than keeping track of tables, which we saw required storage space $2 q^{2}(\log q) /(\log 2)$!
Example. For $p=2, n=3$, we have two choices for $f: X^{3}+X+1$ and $X^{3}+X^{2}+1$. So one model for \mathbb{F}_{8} is

$$
\mathbb{F}_{2}[X] /\left(X^{3}+X+1\right)
$$

and another is

$$
\mathbb{F}_{2}[X] /\left(X^{3}+X^{2}+1\right)
$$

[^0]Even though the addition structure is the same in the field, when multiplying we reduce modulo different f. These are, by the theorem, isomorphic as fields, meaning that there is a way of matching up the elements so that the multiplication corresponds.

It suffices to find one such polynomial, therefore. Given a prime number p and a positive integer n, how do we quickly produce a monic irreducible polynomial $f \in \mathbb{F}_{p}[X]$ of degree n ? Just as in the case of the integers, random searching is enough:
(1) Pick a random f of degree n, monic, in $\mathbb{F}_{p}[X]$.
(2) Test f for irreducibility, and iterate until answer is "yes".

We need to discuss how fast this algorithm is (what is the analogy of the prime number theorem for $\mathbb{F}_{p}[X] ?$) and give a fast algorithm to test a polynomial for irreducibility.

We let

$$
a_{n}(p)=\#\left\{f \in \mathbb{F}_{p}[X]: f \text { monic, irreducible, } \operatorname{deg} f=n\right\} .
$$

The probability of "yes" in (2) above is $a_{n}(p) / p^{n}$.
From unique factorization in $\mathbb{F}_{p}[X]$ one can dedcue: for all $n \geq 1, \sum_{d \mid n} d a_{d}(p)=$ p^{n}. From this, we can obtain the closed formula:

$$
a_{n}(p)=\frac{1}{n} \sum_{d \mid n} \mu(d) p^{n / d}
$$

where $\mu(d)$ is defined by

$$
\mu(d)= \begin{cases}0, & d \text { is divisible by the square of a prime number; } \\ (-1)^{r}, & d \text { is the product of } r \text { distinct prime numbers }\end{cases}
$$

Example. For example, $\mu(1)=1, \mu(2)=-1, \mu(3)=-1, \mu(4)=0, \mu(5)=-1$, $\mu(6)=1$, and so on. Therefore

$$
a_{45}(p)=\frac{1}{45}\left(p^{45}-p^{15}-p^{9}+p^{3}\right)
$$

For our purposes, we have the estimate from before:

$$
\frac{p^{n}-2 p^{\lfloor n / 2\rfloor}}{n}<a_{n}(p) \leq \frac{p^{n}}{n} .
$$

Therefore

$$
\frac{1}{n}-2 \frac{p^{-n / 2}}{n}<\frac{a_{n}(p)}{p^{n}} \leq \frac{1}{n}
$$

Hence $a_{n}(p) / p^{n} \approx 1 / n$. A random polynomial monic of degree n is irreducible with probability $\sim 1 / n$, independent of p. Recall that a random positive integer near x is prime with probability $\sim 1 / \log x$: the degree of a polynomial corresponds roughly to the logarithm of an integer.

We have the following remarkable theorem:
Theorem. In $\mathbb{F}_{p}[X]$, one has

$$
X^{p^{n}}-X=\prod_{\substack{g \in \mathbb{F}_{p}[X] \\ g \text { monic, irreducible } \\(\operatorname{deg} g) \mid n}} g
$$

for all $n \geq 1$.
Note, the relation

$$
\sum_{d \mid n} d a_{d}(p)=p^{n}
$$

expresses that the degrees of the LHS and RHS are the same.
If k is a finite field, $\# k=q$, then we see from the multiplicative structure of k that $\alpha^{q}=\alpha$. Recall that if $k=\mathbb{F}_{p}$, where p is prime, then by Fermat's little theorem, for all $a \in \mathbb{Z}, a^{p} \equiv a(\bmod p)$. Similarly, we will see that $k=\mathbb{F}_{p}[X] /(g)$, where g is irreducible, with $q=p^{\operatorname{deg} g}$, has the property that for all polynomials f,

$$
f^{p^{\operatorname{deg} g}} \equiv f \quad(\bmod g)
$$

As a consequence, take $f=X$: then

$$
g \mid\left(X^{p^{\operatorname{deg} g}}-X\right)
$$

By induction, we see that $\alpha=\alpha^{q}=\left(\alpha^{q}\right)^{q}=\alpha^{q^{2}}=\cdots=\alpha^{q^{i}}$, so in fact

$$
f^{p^{i \operatorname{deg} g}} \equiv f \quad(\bmod g) .
$$

This shows that if $\operatorname{deg} g \mid n$, then

$$
g \mid\left(X^{p^{n}}-X\right)
$$

in $\mathbb{F}_{p}[X]$.
Now we can prove the theorem:
Proof. Since we have unique factorization in $\mathbb{F}_{p}[X], X^{p^{n}}-X$ can be written as the product of irreducible factors. Therefore for each g which is monic, irreducible, with $\operatorname{deg} g \mid n$, we know that $g \mid X^{p^{n}}-X$, so all of those g occur, hence

$$
X^{p^{n}}-X=h \prod_{\substack{g \\ \operatorname{deg} g \mid n}} g .
$$

We would like to show that h is trivial.
But from the relation

$$
\sum_{d \mid n} d a_{d}(p)=p^{n}
$$

we count degrees on both sides and see that $\operatorname{deg} h=0$, so h is constant, but since both sides are monic, $h=1$.

Testing for Irreducibility

Given $f \in \mathbb{F}_{p}[X]$, monic of degree $n \geq 1$, how can we tell whether f is irreducible? We see from the above that one necessary condition is: $X^{p^{n}} \equiv X(\bmod f)$. This is something that can easily be tested. If no, then the polynomial is not irreducible. If yes, then $f \mid\left(X^{p^{n}}-X\right)$ so f is a subproduct of $\prod_{g} g$ as above so each irreducible factor of f occurs only once in f and has degree dividing n.

We therefore have the following:
Theorem. Let $f \in \mathbb{F}_{p}[X]$ be monic of degree $n \geq 1$.
(a) Suppose first n is a power of a prime number $n=r^{t}, t \geq 1$. Then: f is irreducible if and only if

$$
X^{p^{n}} \equiv X \quad(\bmod f) \text { and } X^{p^{n / r}}=X^{p^{r^{t-1}}} \not \equiv X \quad(\bmod f)
$$

(b) For general n: f is irreducible if and only if

$$
X^{p^{n}} \equiv X \quad(\bmod f)
$$

and for each $r \mid n$ prime,

$$
X^{p^{n / r}}-X \in\left(\mathbb{F}_{p}[X] /(f)\right)^{*}
$$

i.e. the element $X^{p^{n / r}}-X$ is a unit modulo f.

Proof. It is clear from the above that if f is irreducible, then we have conditions (a) and (b), respectively.

Now suppose that we have the condition in (a). We see that every irreducible factor g must have degree dividing $n=r^{t}$, so in particular unless $g=f$ its degree must be strictly smaller, hence divide r^{t-1}. Therefore $X^{p^{r t-1}} \equiv X(\bmod f)$, which is a contradiction.

For (b), let g be an irreducible factor of f. We will show that $g=f$. Suppose otherwise: then again since $\operatorname{deg} g \mid \operatorname{deg} f$ we may assume that there is a prime factor r such that it divides $\operatorname{deg} f=n$ to a higher power than $\operatorname{deg} g$; in particular, by adding degrees, we see that $X^{p^{n / r}} \equiv X(\bmod g)$ and $g \mid f$, so $g \mid \operatorname{gcd}\left(X^{p^{n / r}}-\right.$ $X, f)=1$, a contradiction.

A word on computational complexity: by using repeated squarings as in the case of $\mathbb{Z} / n \mathbb{Z}$, we may obtain the time for this algorithm (which requires only powerings and computing gcd) as $c n(\log p)^{3}$. However, if you take advantage of the freshperson's dream, and use the fact that p th power can be represented as a linear map (and hence a matrix), we can compute this in $n(\log p)$ steps: in particular, we see that $X^{p^{n}} \equiv X(\bmod f)$ if and only if the matrix representing the p th power Frobenius has nth power the identity.

An Aside

We now sketch

$$
\sum_{d \mid n} d a_{d}(p)=p^{n}
$$

very briefly! We have the following equalities:

$$
\begin{aligned}
Z(t) & =\sum_{\substack{h \in \mathbb{F}_{p}[X] \\
h \text { monic }}} t^{\operatorname{deg} h}=\prod_{\substack{f \text { monic } \\
\text { irreducible }}} \frac{1}{1-t^{\operatorname{deg} f}} \\
& =\sum_{n=0}^{\infty} p^{n} t^{n}=\frac{1}{1-p t}=\prod_{d=1}^{\infty} \frac{1}{\left(1-t^{d}\right)^{a_{d}(p)}} .
\end{aligned}
$$

Now we apply the logarithmic derivative: to a power series $P(t)$, we have $\lambda(P)=$ P^{\prime} / P : we get

$$
\lambda(1 /(1-p t))=-\lambda(1-p t)=\frac{t p}{1-t p}=\sum_{n=1}^{\infty} p^{n} t^{n}
$$

and this is equal to

$$
\lambda\left(\prod\left(1-t^{d}\right)^{-a_{d}(p)}\right)=\sum_{d} a_{d}(p) \frac{d t^{d}}{1-t^{d}}=\sum_{d} \sum_{m=1}^{\infty} d a_{d}(p) t^{m d}
$$

Now compare coefficients at t^{n}.

[^0]: This is some of the material covered March 19-21, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

