
FINITE FIELDS

MATH 195

Introduction

A finite field is a field (commutative ring R with R∗ = R\{0}) with only finitely
many elements. For example, Z/pZ with p prime is a field, which we denote Fp.

Theorem. We have the following:
(a) If q is a positive integer, then there is a field k such that #k = q if and

only if q = pn for some prime number p and n ≥ 1.
(b) Suppose k0 and k1 are two finite fields, #ki = pni

i , pi prime, ni ≥ 1. Then
there is an embedding k0 ↪→ k1 as a subfield if and only if p0 = p1 and
n0 | n1 if and only if #k1 is a power of #k0. In addition, if these three
statements are true, then the number of embeddings k0 ↪→ k1 is equal to n0.

In this case, p is called the characteristic of k, and n is the degree of n if #k =
q = pn.

For example, if #k = pn, then Fp can be embedded in k in exactly one manner.
After all, we must map 0 and 1 uniquely, and this respects the addition law, so
1 + 1, 1 + 1 + 1, . . . and so on up to 1 + 1 + · · ·+ 1 = p = 0 will already have fixed
image.

As a second consequence, we note that if k0 and k1 are finite fields with the same
number of elements, then k0 ' k1: the two fields are isomorphic, meaning we can
view them as the same field. In other words, given q = pn, there is ‘essentially’
only one field of q elements, which we denote Fq.

Example. The field of 3 elements is represented by the addition and multiplication
table for Z/3Z.

For a finite field of 4 = 22 elements, we must work harder: F4 is built from F2,
so it will have the elements 0, 1, a, b, and tables

+ 0 1 a b
0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

and
· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a
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By the ring axioms,

a + a = 1 · a + 1 · a = (1 + 1) · a = 0 · a = 0

for any a which contains F2 as a subring (with the same unit element). Hence this
is true for any ring of characteristic 2.

Generally, if R is any ring containing Fp as a subring (with the same unit element)
then for all a ∈ R one has a + a + · · ·+ a︸ ︷︷ ︸

p

= 0.

Notice that F4 has an automorphism which fixes 0, 1 and maps a 7→ b, b 7→ a.

Constructing Fq

Given p and n we would like to produce a ‘model’ of Fpn . How?
In general, tables are not a sufficient model. For q = pn, an addition table and

multiplication table would take up space

2q2

⌈
log q

log 2

⌉
which is quite bad. We would like to eliminate any powers of q.

The connection to linear algebra: in the above example, {a, 1} are a basis for F4

viewed as a vector space over F2. From the example, b = a + 1, so we represent
this as

0 = 0 · a + 0 · 1 = 00
1 = 0 · a + 1 · 1 = 01
a = 1 · a + 0 · 1 = 10
b = 1 · a + 1 · 1 = 11.

Hence each element of F4 can in a unique way be written as c1a+c01 with c0, c1 ∈ F2.
We have

c1c0 + d1d0 = (c1 + d1)(c0 + d0).
How does multiplication work in this scheme?

(c1a + c0)(d1a + d0) = (c1d1)a2 + (c0d1 + c1d0)a + c0d0.

But we need to know what a2 is for this to work. This is 1 entry in the table:
a2 = b = a + 1, then substitute again to get the formula in terms of the basis a, 1.
This says that a2 + a + 1 = 0, and we have

(c1a + c0)(d1a + d0) = (c1d1 + c1d0 + c0d1)a + (c0d0 + c1d1)1.

In other words, the arithmetic in the field F4 is summarized by the equation
a2 + a + 1 = 0.

Polynomials over Fp

Let p be a prime number, and Fp = Z/pZ. A polynomial over Fp is an expression
of the form cnXn + cn−1X

n−1 + · · ·+ c1X + c0, where X is just a symbol and each
ci ∈ Fp.

Usually, we resrict to the case where the highest degree term has a nonzero
coefficient, cn 6= 0. Then n is called the degree of f , written n = deg f . The set of
all polynomials over Fp is denoted by Fp[X], and it is a commutative ring containing
Fp as a subring. This is far from being a finite field as this ring is infinite.
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Under addition,

(cnXn + · · ·+ c1X + c0)+ (dmXm + · · ·+d1X +d0) = (cn +dn)Xn + · · ·+(c0 +d0)

(adding in a few zero terms we assume m = n). We multiply as usual, subject to
the conditions that the coefficients are in Fp: this looks like

(cnXn + · · ·+ c0)(dmXm + · · ·+ d0) =
m+n∑
k=0

∑
i+j=k

cidjX
k.

The typical name for a polynomial is f = f(X). Notice that we have deg(fg) =
deg f + deg g. If cn = 1, then f is monic.

There are extended analogies between Z and Fp[X]. If we do computations with
polynomials, we may write f = cncn−1 . . . c0, for ci ∈ Fp.

Example. For p = 2, 1 ·X3 + 1 ·X + 1 would be written 1011.

This is not always a more compact representation: the polynomial X210
=

100 · 0︸ ︷︷ ︸
210zeros

.

Addition of polynomials can be done digitwise modulo 2: (X3 + X + 1) + (X4 +
X2 + 1) becomes 1011 + 10101 = 11110, X4 + X3 + X2 + X, with no carries. To
multiply these, we write

1 0 1 1
1 0 1 0 1

1 0 1 1
1 0 1 1

1 0 1 1
1 0 0 1 0 1 1 1

represents the multiplication (X3 +X +1)(X4 +X2 +1) = X7 +X4 +X2 +X +1,
just like multiplying integers, the second representing the repeated “shifts” of the
first to be added together.

We have seen, then, the following analogies between Z and Fp[X]:
In Z, we may write numbers in base b = 10, whereas we think of polynomials as

“base” X. The degree function on Fp[X] corresponds roughly then to log |n| for Z.
The unit groups are Z∗ = {±1}, Fp[X]∗ = F∗p. Note then that every integer can be
written as a positive integer times a unit (±1), and similarly, every polynomial in
Fp[X] can be written as a monic polynomial times the leading coefficient cn 6= 0,
hence a unit.

This analogy is limited: for example, if you add two integers which are posi-
tive, you again get a positive integer, but this is not true if you add two monic
polynomials.

As another example, (X3 + X + 1)2 can be computed as

1 0 1 1
1 0 1 1
1 0 1 1

1 0 1 1
1 0 1 1
1 0 0 0 1 0 1

so that (X3 + X + 1)2 = X6 + X2 + 1.
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This is a more general phenomenon, called Freshperson’s dream: (a+b)2 = a2+b2

in any commutative ring (e.g. F2[X]) containing F2. (For a proof, consider the
missing term 2ab.) Note that

(a + b)3 = a3 + 3a2b + 3ab2 + b3

so if 3 = 0 in the ring, i.e. if F3 is contained in your ring, then this becomes just
a3 + b3. More generally:

Claim (Freshperson’s dream). If a commutative ring R contains Fp, then (a+b)p =
ap + bp in R.

From this, and the trivial facts that (ab)p = apbp and 1p = 1, we see that the
map a 7→ ap for a ring R containing Fp is called the Frobenius map is in fact a ring
homomorphism. Notice that there is no analogy of the Frobenius map for Z.

Recall that the integers have division with remainder: for any positive integers
a, b, there exists q > 0 and 0 ≤ r ≤ b− 1 such that

a = qb + r

where q is the quotient and r the remainder. There is an analogous statement for
Fp[X].

Claim. If f, g ∈ Fp[X], g 6= 0, then there exists unique q, r ∈ Fp[X] such that

f = qg + r

where deg r < deg g or r = 0.

Example. For p = 3. Take f = X4 − X3, g = X3 − X − 1, with coefficients
F3 = {0, 1,−1}. We perform long division (synthetic division just subject to the
arithmetic in Fp), and obtain q = X − 1, r = X2 − 1.

Here is another schematic way to compute this:

Example. For p = 2, g = X3 + X + 1 = 1011, f = X10 + X5 + X2 = 10000100100,
so we compute:

1 0 0 0 0 1 0 0 1 0 0
1 0 1 1

1 0 1 1
1 0 1 1

1 0 1 1
1 0 1 1

We repeatedly add 1011 so that the columns add to to the top. This says that, in
fact, r = 0.

We say that Z and Fp[X] are Euclidean domains since they have this division
with remainder.

Theorem (Unique factorization). Every monic polynomial in Fp[X] can in a unique
way (up to ordering) be written as a product of monic irreducible polynomials.

A polynomial f ∈ Fp[X] is called irreducible if deg f > 0 and there do not exist
g, h ∈ Fp[X] such that f = gh, deg g,deg h < deg f .
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Example. We compute the factorization of f = X10 + X9 + X5 + X2 in F2. We
note that this has a double root X = 0, giving us X10 +X9 +X5 +X2 = X2(X8 +
X6 + X3 + 1). This second polynomial has X = 1 as a root, so we compute (using
long division) that X8 +X6 +X3 +1 = (X +1)(X7 +X4 +X3 +X2 +X +1). This
again has X = 1 as a root, and we are left with the factor X6 + X5 + X4 + X2 + 1.
This has no roots. If it has an (irreducible) factor, it will be degree 2 or degree 3.
The only monic quadratic with a root is X2 + X + 1, and a cubic is irreducible if
and only if it does not have a root, hence we have only X3 +X2 +1 and X3 +X +1.
(X = 1 is a root if and only if there is an even number of termss.) Dividing each
of these into our degree 6 factor we see that there is a remainder, so a complete
factorization is given by

X10 + X9 + X5 + X2 = X2(X + 1)2(X6 + X5 + X4 + X2 + 1).

Recall that

an(p) = #{f ∈ Fp[X] : deg f = n, f monic irreducible}.

We have a1(2) = 2, a2(2) = 1 (the unique irreducible is X2 +X +1) and a2(3) = 2.
Since any monic polynomial of degree 1 is of the form X − a, and each of these

is irreducible, we have a1(p) = p.
We count that there are p2 monic polynomials of degree 2 (X2+aX+b, p choices

for each of a and b). If it factors, it does so as X2 + aX + b = (X − c)(X − d): if
c 6= d, there are

(
p
2

)
choices, and if c = d, total p, for a total of (p+1)p/2. Therefore

there are a total of

a2(p) = p2 − p(p + 1)
2

=
1
2
(p2 − p).

This reasoning will continue: if a cubic factors, it does so as the product of a linear
and irreducible quadratic or as the product of three linear factors. This is a bit of
a headache, hence a homework problem:

a3(p) =
1
3
(p3 − p).

If you continue in this way, you find

a4(p) =
1
4
(p4 − p2)

and

a5(p) =
1
5
(p5 − p),

with an amazing amount of cancellation. The next term becomes

a6(p) =
1
6
(p6 − p3 − p2 + p),

which is much more complicated.
We have the following analogue to the prime number theorem:

Claim. For all n ≥ 1 and all primes p, one has∑
d|n

dad(p) = pn.
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Example. For example, with n = 2, since d = 1 or d = 2 we have∑
d|n

dad(p) = p2 = a1(p) + 2a2(p),

so
a2(p) =

1
2
(p2 − a1(p)) =

1
2
(p2 − p).

Similarly,

6a6(p) = p6 − 3a3(p)− 2a2(p)− a1(p) = p6 − p3 − p2 + p.

This gives an(p) ≤ pn/n as an upper bound, and for a lower bound,

nan(p) = pn −
∑
d|n

d≤bn/2c

dad(p) ≥ pn −
bn/2c∑
d=1

pd > pn − 2pbn/2c.

Therefore
pn − 2pbn/2c

n
< an(p) ≤ pn

n
.


