FINITE FIELDS

MATH 195

Introduction

A finite field is a field (commutative ring R with $R^{*}=R \backslash\{0\}$) with only finitely many elements. For example, $\mathbb{Z} / p \mathbb{Z}$ with p prime is a field, which we denote \mathbb{F}_{p}.
Theorem. We have the following:
(a) If q is a positive integer, then there is a field k such that $\# k=q$ if and only if $q=p^{n}$ for some prime number p and $n \geq 1$.
(b) Suppose k_{0} and k_{1} are two finite fields, $\# k_{i}=p_{i}^{n_{i}}$, p_{i} prime, $n_{i} \geq 1$. Then there is an embedding $k_{0} \hookrightarrow k_{1}$ as a subfield if and only if $p_{0}=p_{1}$ and $n_{0} \mid n_{1}$ if and only if $\# k_{1}$ is a power of $\# k_{0}$. In addition, if these three statements are true, then the number of embeddings $k_{0} \hookrightarrow k_{1}$ is equal to n_{0}.

In this case, p is called the characteristic of k, and n is the degree of n if $\# k=$ $q=p^{n}$.

For example, if $\# k=p^{n}$, then \mathbb{F}_{p} can be embedded in k in exactly one manner. After all, we must map 0 and 1 uniquely, and this respects the addition law, so $1+1,1+1+1, \ldots$ and so on up to $1+1+\cdots+1=p=0$ will already have fixed image.

As a second consequence, we note that if k_{0} and k_{1} are finite fields with the same number of elements, then $k_{0} \simeq k_{1}$: the two fields are isomorphic, meaning we can view them as the same field. In other words, given $q=p^{n}$, there is 'essentially' only one field of q elements, which we denote \mathbb{F}_{q}.
Example. The field of 3 elements is represented by the addition and multiplication table for $\mathbb{Z} / 3 \mathbb{Z}$.

For a finite field of $4=2^{2}$ elements, we must work harder: \mathbb{F}_{4} is built from \mathbb{F}_{2}, so it will have the elements $0,1, a, b$, and tables

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

and

\cdot	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

This is some of the material covered March 12-14, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu; Revised March 17, 2002.

By the ring axioms,

$$
a+a=1 \cdot a+1 \cdot a=(1+1) \cdot a=0 \cdot a=0
$$

for any a which contains \mathbb{F}_{2} as a subring (with the same unit element). Hence this is true for any ring of characteristic 2 .

Generally, if R is any ring containing \mathbb{F}_{p} as a subring (with the same unit element) then for all $a \in \mathbb{R}$ one has $\underbrace{a+a+\cdots+a}_{p}=0$.

Notice that \mathbb{F}_{4} has an automorphism which fixes 0,1 and maps $a \mapsto b, b \mapsto a$.

Constructing \mathbb{F}_{q}

Given p and n we would like to produce a 'model' of $\mathbb{F}_{p^{n}}$. How?
In general, tables are not a sufficient model. For $q=p^{n}$, an addition table and multiplication table would take up space

$$
2 q^{2}\left\lceil\frac{\log q}{\log 2}\right\rceil
$$

which is quite bad. We would like to eliminate any powers of q.
The connection to linear algebra: in the above example, $\{a, 1\}$ are a basis for \mathbb{F}_{4} viewed as a vector space over \mathbb{F}_{2}. From the example, $b=a+1$, so we represent this as

$$
\begin{aligned}
0 & =0 \cdot a+0 \cdot 1
\end{aligned}=0001 . a+1 \cdot 1=01 .
$$

Hence each element of \mathbb{F}_{4} can in a unique way be written as $c_{1} a+c_{0} 1$ with $c_{0}, c_{1} \in \mathbb{F}_{2}$. We have

$$
c_{1} c_{0}+d_{1} d_{0}=\left(c_{1}+d_{1}\right)\left(c_{0}+d_{0}\right)
$$

How does multiplication work in this scheme?

$$
\left(c_{1} a+c_{0}\right)\left(d_{1} a+d_{0}\right)=\left(c_{1} d_{1}\right) a^{2}+\left(c_{0} d_{1}+c_{1} d_{0}\right) a+c_{0} d_{0} .
$$

But we need to know what a^{2} is for this to work. This is 1 entry in the table: $a^{2}=b=a+1$, then substitute again to get the formula in terms of the basis $a, 1$. This says that $a^{2}+a+1=0$, and we have

$$
\left(c_{1} a+c_{0}\right)\left(d_{1} a+d_{0}\right)=\left(c_{1} d_{1}+c_{1} d_{0}+c_{0} d_{1}\right) a+\left(c_{0} d_{0}+c_{1} d_{1}\right) 1
$$

In other words, the arithmetic in the field F_{4} is summarized by the equation $a^{2}+a+1=0$.

Polynomials over \mathbb{F}_{p}

Let p be a prime number, and $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. A polynomial over \mathbb{F}_{p} is an expression of the form $c_{n} X^{n}+c_{n-1} X^{n-1}+\cdots+c_{1} X+c_{0}$, where X is just a symbol and each $c_{i} \in \mathbb{F}_{p}$.

Usually, we resrict to the case where the highest degree term has a nonzero coefficient, $c_{n} \neq 0$. Then n is called the degree of f, written $n=\operatorname{deg} f$. The set of all polynomials over \mathbb{F}_{p} is denoted by $\mathbb{F}_{p}[X]$, and it is a commutative ring containing \mathbb{F}_{p} as a subring. This is far from being a finite field as this ring is infinite.

Under addition,
$\left(c_{n} X^{n}+\cdots+c_{1} X+c_{0}\right)+\left(d_{m} X^{m}+\cdots+d_{1} X+d_{0}\right)=\left(c_{n}+d_{n}\right) X^{n}+\cdots+\left(c_{0}+d_{0}\right)$
(adding in a few zero terms we assume $m=n$). We multiply as usual, subject to the conditions that the coefficients are in \mathbb{F}_{p} : this looks like

$$
\left(c_{n} X^{n}+\cdots+c_{0}\right)\left(d_{m} X^{m}+\cdots+d_{0}\right)=\sum_{k=0}^{m+n} \sum_{i+j=k} c_{i} d_{j} X^{k}
$$

The typical name for a polynomial is $f=f(X)$. Notice that we have $\operatorname{deg}(f g)=$ $\operatorname{deg} f+\operatorname{deg} g$. If $c_{n}=1$, then f is monic.

There are extended analogies between \mathbb{Z} and $\mathbb{F}_{p}[X]$. If we do computations with polynomials, we may write $f=c_{n} c_{n-1} \ldots c_{0}$, for $c_{i} \in \mathbb{F}_{p}$.
Example. For $p=2,1 \cdot X^{3}+1 \cdot X+1$ would be written 1011.
This is not always a more compact representation: the polynomial $X^{2^{10}}=$ $\underbrace{100 \cdot 0}_{2^{10} \text { zeros }}$.

Addition of polynomials can be done digitwise modulo 2: $\left(X^{3}+X+1\right)+\left(X^{4}+\right.$ $X^{2}+1$) becomes $1011+10101=11110, X^{4}+X^{3}+X^{2}+X$, with no carries. To multiply these, we write

					1	0	1
			1	0	1	0	1
					1	0	1
		1	0	1	1	1	
1	0	1	1				
1	0	0	1	0	1	1	1

represents the multiplication $\left(X^{3}+X+1\right)\left(X^{4}+X^{2}+1\right)=X^{7}+X^{4}+X^{2}+X+1$, just like multiplying integers, the second representing the repeated "shifts" of the first to be added together.

We have seen, then, the following analogies between \mathbb{Z} and $\mathbb{F}_{p}[X]$:
In \mathbb{Z}, we may write numbers in base $b=10$, whereas we think of polynomials as "base" X. The degree function on $\mathbb{F}_{p}[X]$ corresponds roughly then to $\log |n|$ for \mathbb{Z}. The unit groups are $\mathbb{Z}^{*}=\{ \pm 1\}, \mathbb{F}_{p}[X]^{*}=\mathbb{F}_{p}^{*}$. Note then that every integer can be written as a positive integer times a unit (± 1), and similarly, every polynomial in $\mathbb{F}_{p}[X]$ can be written as a monic polynomial times the leading coefficient $c_{n} \neq 0$, hence a unit.

This analogy is limited: for example, if you add two integers which are positive, you again get a positive integer, but this is not true if you add two monic polynomials.

As another example, $\left(X^{3}+X+1\right)^{2}$ can be computed as

			1	0	1	1
			1	0	1	1
			1	0	1	1
		1	0	1	1	
1	0	1	1			
1	0	0	0	1	0	1

so that $\left(X^{3}+X+1\right)^{2}=X^{6}+X^{2}+1$.

This is a more general phenomenon, called Freshperson's dream: $(a+b)^{2}=a^{2}+b^{2}$ in any commutative ring (e.g. $\mathbb{F}_{2}[X]$) containing \mathbb{F}_{2}. (For a proof, consider the missing term 2ab.) Note that

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

so if $3=0$ in the ring, i.e. if \mathbb{F}_{3} is contained in your ring, then this becomes just $a^{3}+b^{3}$. More generally:

Claim (Freshperson's dream). If a commutative ring R contains \mathbb{F}_{p}, then $(a+b)^{p}=$ $a^{p}+b^{p}$ in R.

From this, and the trivial facts that $(a b)^{p}=a^{p} b^{p}$ and $1^{p}=1$, we see that the map $a \mapsto a^{p}$ for a ring R containing \mathbb{F}_{p} is called the Frobenius map is in fact a ring homomorphism. Notice that there is no analogy of the Frobenius map for \mathbb{Z}.

Recall that the integers have division with remainder: for any positive integers a, b, there exists $q>0$ and $0 \leq r \leq b-1$ such that

$$
a=q b+r
$$

where q is the quotient and r the remainder. There is an analogous statement for $\mathbb{F}_{p}[X]$.

Claim. If $f, g \in \mathbb{F}_{p}[X], g \neq 0$, then there exists unique $q, r \in \mathbb{F}_{p}[X]$ such that

$$
f=q g+r
$$

where $\operatorname{deg} r<\operatorname{deg} g$ or $r=0$.
Example. For $p=3$. Take $f=X^{4}-X^{3}, g=X^{3}-X-1$, with coefficients $\mathbb{F}_{3}=\{0,1,-1\}$. We perform long division (synthetic division just subject to the arithmetic in \mathbb{F}_{p}), and obtain $q=X-1, r=X^{2}-1$.

Here is another schematic way to compute this:
Example. For $p=2, g=X^{3}+X+1=1011, f=X^{10}+X^{5}+X^{2}=10000100100$, so we compute:

1	0	0	0	0	1	0	0	1	0	0
1	0	1	1							
		1	0	1	1					
			1	0	1	1				
				1	0	1	1			
					1	0	1	1		

We repeatedly add 1011 so that the columns add to to the top. This says that, in fact, $r=0$.

We say that \mathbb{Z} and $\mathbb{F}_{p}[X]$ are Euclidean domains since they have this division with remainder.

Theorem (Unique factorization). Every monic polynomial in $\mathbb{F}_{p}[X]$ can in a unique way (up to ordering) be written as a product of monic irreducible polynomials.

A polynomial $f \in \mathbb{F}_{p}[X]$ is called irreducible if $\operatorname{deg} f>0$ and there do not exist $g, h \in \mathbb{F}_{p}[X]$ such that $f=g h, \operatorname{deg} g, \operatorname{deg} h<\operatorname{deg} f$.

Example. We compute the factorization of $f=X^{10}+X^{9}+X^{5}+X^{2}$ in \mathbb{F}_{2}. We note that this has a double root $X=0$, giving us $X^{10}+X^{9}+X^{5}+X^{2}=X^{2}\left(X^{8}+\right.$ $X^{6}+X^{3}+1$). This second polynomial has $X=1$ as a root, so we compute (using long division) that $X^{8}+X^{6}+X^{3}+1=(X+1)\left(X^{7}+X^{4}+X^{3}+X^{2}+X+1\right)$. This again has $X=1$ as a root, and we are left with the factor $X^{6}+X^{5}+X^{4}+X^{2}+1$. This has no roots. If it has an (irreducible) factor, it will be degree 2 or degree 3 . The only monic quadratic with a root is $X^{2}+X+1$, and a cubic is irreducible if and only if it does not have a root, hence we have only $X^{3}+X^{2}+1$ and $X^{3}+X+1$. ($X=1$ is a root if and only if there is an even number of termss.) Dividing each of these into our degree 6 factor we see that there is a remainder, so a complete factorization is given by

$$
X^{10}+X^{9}+X^{5}+X^{2}=X^{2}(X+1)^{2}\left(X^{6}+X^{5}+X^{4}+X^{2}+1\right)
$$

Recall that

$$
a_{n}(p)=\#\left\{f \in \mathbb{F}_{p}[X]: \operatorname{deg} f=n, f \text { monic irreducible }\right\} .
$$

We have $a_{1}(2)=2, a_{2}(2)=1$ (the unique irreducible is $X^{2}+X+1$) and $a_{2}(3)=2$.
Since any monic polynomial of degree 1 is of the form $X-a$, and each of these is irreducible, we have $a_{1}(p)=p$.

We count that there are p^{2} monic polynomials of degree $2\left(X^{2}+a X+b, p\right.$ choices for each of a and b). If it factors, it does so as $X^{2}+a X+b=(X-c)(X-d)$: if $c \neq d$, there are $\binom{p}{2}$ choices, and if $c=d$, total p, for a total of $(p+1) p / 2$. Therefore there are a total of

$$
a_{2}(p)=p^{2}-\frac{p(p+1)}{2}=\frac{1}{2}\left(p^{2}-p\right) .
$$

This reasoning will continue: if a cubic factors, it does so as the product of a linear and irreducible quadratic or as the product of three linear factors. This is a bit of a headache, hence a homework problem:

$$
a_{3}(p)=\frac{1}{3}\left(p^{3}-p\right)
$$

If you continue in this way, you find

$$
a_{4}(p)=\frac{1}{4}\left(p^{4}-p^{2}\right)
$$

and

$$
a_{5}(p)=\frac{1}{5}\left(p^{5}-p\right),
$$

with an amazing amount of cancellation. The next term becomes

$$
a_{6}(p)=\frac{1}{6}\left(p^{6}-p^{3}-p^{2}+p\right),
$$

which is much more complicated.
We have the following analogue to the prime number theorem:
Claim. For all $n \geq 1$ and all primes p, one has

$$
\sum_{d \mid n} d a_{d}(p)=p^{n} .
$$

Example. For example, with $n=2$, since $d=1$ or $d=2$ we have

$$
\sum_{d \mid n} d a_{d}(p)=p^{2}=a_{1}(p)+2 a_{2}(p)
$$

SO

$$
a_{2}(p)=\frac{1}{2}\left(p^{2}-a_{1}(p)\right)=\frac{1}{2}\left(p^{2}-p\right) .
$$

Similarly,

$$
6 a_{6}(p)=p^{6}-3 a_{3}(p)-2 a_{2}(p)-a_{1}(p)=p^{6}-p^{3}-p^{2}+p
$$

This gives $a_{n}(p) \leq p^{n} / n$ as an upper bound, and for a lower bound,

$$
n a_{n}(p)=p^{n}-\sum_{\substack{d \mid n \\ d \leq\lfloor n / 2\rfloor}} d a_{d}(p) \geq p^{n}-\sum_{d=1}^{\lfloor n / 2\rfloor} p^{d}>p^{n}-2 p^{\lfloor n / 2\rfloor}
$$

Therefore

$$
\frac{p^{n}-2 p^{\lfloor n / 2\rfloor}}{n}<a_{n}(p) \leq \frac{p^{n}}{n}
$$

