PRIMALITY

Primality Testing

In cryptography, we need to generate large prime numbers. How can we test if a large number is prime?

If n is really prime, then by Fermat's little theorem, one has

$$
\forall a \in(\mathbb{Z} / n \mathbb{Z})^{*}, a^{n-1} \equiv 1 \quad(\bmod n)
$$

If this condition is not satisfied, then we can either be happy anyway or we stumble upon an $a \in(\mathbb{Z} / n \mathbb{Z})^{*}$ with $a^{n-1} \not \equiv 1(\bmod n)$ and in that case we output "no". (If "no", we can prove that n cannot be prime.)

The resulting probabilistic primality test is called the witness test of Miller and Rabin [see also $\S 7.4$ in the text, the Miller-Rabin test].

Suppose that n is an odd prime, $a \in \mathbb{Z}$. Then $n \mid a^{n}-a$ (by Fermat's little theorem), so if we write $n-1=2^{k} u$ (where u is odd, $k \geq 1$), we have

$$
\begin{aligned}
n \mid a\left(a^{n-1}-1\right) & =a\left(a^{(n-1) / 2}+1\right)\left(a^{(n-1) / 2}-1\right) \\
& =a\left(a^{(n-1) / 2}+1\right)\left(a^{(n-1) / 4}+1\right)\left(a^{(n-1) / 4}-1\right) \\
& =\cdots=a\left(a^{u}-1\right) \prod_{\nu=0}^{k-1}\left(a^{2^{i} u}+1\right) .
\end{aligned}
$$

So we have at least one of

$$
\begin{aligned}
a & \equiv 0 & & (\bmod n) \\
a^{u} & \equiv 1 & & (\bmod n)
\end{aligned}
$$

$$
a^{2^{i} u} \equiv-1 \quad(\bmod n)
$$

for some i with $0 \leq i<k$.
So now let n be any odd integer >1 (not necessarily prime) and $n-1=2^{k} u$ where u is odd. If a is an integer satisfying

$$
\begin{array}{rlr}
a \not \equiv 0 & (\bmod n) \\
a^{u} & \not \equiv 1 & (\bmod n) \\
a^{2^{i} u} \not \equiv-1 & (\bmod n) &
\end{array}
$$

for any $0 \leq i<k$, then a is called a witness to the compositeness of n.
So, if a witness to the compositeness of n exists, n is really composite. Though you can be certain n is composite, you cannot extract a divisor (easily) from the proof or algorithm. We do have the following:

[^0]Theorem. Let $n>1$ be an odd integer. If n is prime, then no witnesses for n exist. If n is composite, then

$$
\frac{\#\{a: 1 \leq a \leq n-1, a \text { a witness for } n\}}{n-1} \geq \frac{3}{4}
$$

Therefore, approximately 75% of congruence classes represent witnesses.
Example. Every one of the numbers $2,3,4,5,6,7$ is a witness for $n=9$, but neither 1 or 8 works. (Since $9-1=8=2^{3}, u=1$, so the conditions are easily satisfied.)

We then have the following algorithm to probabilistically test for primality:
(1) Pick $a \in\{1, \ldots, n-1\}$ at random, and test whether a is a witness. If yes, output "yes".
(2) Otherwise, repeat. [Stop after a certain amount of time because probabilistically, n is likely tto be prime, but no mathematical proof.]

Large Primes

Now we can attend to the problem of finding a prime number with a given number of digits. For RSA, we need $n=p q$ with p and q both approximately 150-200 digits.

We have the following naive algorithm:
(1) Pick a random number with k digits.
(2) Test it for primality as above (using the witness test).
(3) Continue until the answer is "yes".

All algorithms you find will be a variation of this scheme.
Why does this algorithm work? In effect, how often are numbers of size 10^{k} prime? This question is answered by the prime number theorem (proved in 1896) by Hadamard (1865-1963) and de la Valle-Poussin (1866-1962).
Theorem (Prime number theorem).

$$
\frac{\#\{p \leq x: p \text { prime }\}}{x} \sim \frac{1}{\log x}
$$

as $x \rightarrow \infty$.
This says that the limit of the left-hand side over the right-hand side tends to 1 as $x \rightarrow \infty$. "Roughly 1 out of every $\log x$ positive integers up to x is a prime number."

For example, with $k=200, \log \left(10^{200}\right) \approx 460$, which means the probability that a 200 digit number is prime is $1 / 460$.

By restricting to odd numbers, the probability is twice as large, restricting to numbers not divisible by 3 , it is $3 / 2$ times as large, and so on, so we can multiply the probability by

$$
2 \cdot \frac{3}{2} \cdot \frac{5}{4} \cdots \cdots \frac{p}{p-1}
$$

if we eliminate numbers divisible by primes up to p.
The prime number theorem is not easy to prove: D. Newman found an easier proof relying on complex analysis.

[^0]: This is some of the material covered March 7, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

