
PRIMALITY

MATH 195

Primality Testing

In cryptography, we need to generate large prime numbers. How can we test if
a large number is prime?

If n is really prime, then by Fermat’s little theorem, one has

∀a ∈ (Z/nZ)∗, an−1 ≡ 1 (mod n).

If this condition is not satisfied, then we can either be happy anyway or we stumble
upon an a ∈ (Z/nZ)∗ with an−1 6≡ 1 (mod n) and in that case we output “no”. (If
“no”, we can prove that n cannot be prime.)

The resulting probabilistic primality test is called the witness test of Miller and
Rabin [see also §7.4 in the text, the Miller-Rabin test].

Suppose that n is an odd prime, a ∈ Z. Then n | an − a (by Fermat’s little
theorem), so if we write n− 1 = 2ku (where u is odd, k ≥ 1), we have

n | a(an−1 − 1) = a(a(n−1)/2 + 1)(a(n−1)/2 − 1)

= a(a(n−1)/2 + 1)(a(n−1)/4 + 1)(a(n−1)/4 − 1)

= · · · = a(au − 1)
k−1∏
ν=0

(a2iu + 1).

So we have at least one of

a ≡ 0 (mod n)

au ≡ 1 (mod n)

a2iu ≡ −1 (mod n)

for some i with 0 ≤ i < k.
So now let n be any odd integer > 1 (not necessarily prime) and n − 1 = 2ku

where u is odd. If a is an integer satisfying

a 6≡ 0 (mod n)

au 6≡ 1 (mod n)

a2iu 6≡ −1 (mod n)

for any 0 ≤ i < k, then a is called a witness to the compositeness of n.
So, if a witness to the compositeness of n exists, n is really composite. Though

you can be certain n is composite, you cannot extract a divisor (easily) from the
proof or algorithm. We do have the following:
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Theorem. Let n > 1 be an odd integer. If n is prime, then no witnesses for n
exist. If n is composite, then

#{a : 1 ≤ a ≤ n− 1, a a witness for n}
n− 1

≥ 3
4
.

Therefore, approximately 75% of congruence classes represent witnesses.

Example. Every one of the numbers 2, 3, 4, 5, 6, 7 is a witness for n = 9, but neither
1 or 8 works. (Since 9− 1 = 8 = 23, u = 1, so the conditions are easily satisfied.)

We then have the following algorithm to probabilistically test for primality:
(1) Pick a ∈ {1, . . . , n− 1} at random, and test whether a is a witness. If yes,

output “yes”.
(2) Otherwise, repeat. [Stop after a certain amount of time because probabilis-

tically, n is likely tto be prime, but no mathematical proof.]

Large Primes

Now we can attend to the problem of finding a prime number with a given
number of digits. For RSA, we need n = pq with p and q both approximately
150-200 digits.

We have the following naive algorithm:
(1) Pick a random number with k digits.
(2) Test it for primality as above (using the witness test).
(3) Continue until the answer is “yes”.

All algorithms you find will be a variation of this scheme.
Why does this algorithm work? In effect, how often are numbers of size 10k

prime? This question is answered by the prime number theorem (proved in 1896)
by Hadamard (1865-1963) and de la Valle-Poussin (1866-1962).

Theorem (Prime number theorem).
#{p ≤ x : p prime}

x
∼ 1

log x
as x →∞.

This says that the limit of the left-hand side over the right-hand side tends to
1 as x → ∞. “Roughly 1 out of every log x positive integers up to x is a prime
number.”

For example, with k = 200, log(10200) ≈ 460, which means the probability that
a 200 digit number is prime is 1/460.

By restricting to odd numbers, the probability is twice as large, restricting to
numbers not divisible by 3, it is 3/2 times as large, and so on, so we can multiply
the probability by

2 · 3
2
· 5
4
· · · · · · p

p− 1
if we eliminate numbers divisible by primes up to p.

The prime number theorem is not easy to prove: D. Newman found an easier
proof relying on complex analysis.


