RSA (CONTINUED): WHEN THE EXPONENT IS LEAKED

MATH 195

We prove the following fact:
Claim. There is a fact algorithm that given $n>1$ odd and given $m \in \mathbb{Z}_{>0}$ satisfying

$$
\forall a \in(\mathbb{Z} / n \mathbb{Z})^{*}: a^{m}=1
$$

'in practice' factors n completely into primes.
We do so via factoring by means of square roots of 1 . Suppose that we have a nonstupid way of generating elements $x \in \mathbb{Z} / n \mathbb{Z}$ such that $x^{2}=1(\bmod n)$ (i.e. $x \neq 1,-1)$. Namely, $x^{2} \equiv 1(\bmod n)$ implies that

$$
n \mid\left(x^{2}-1\right)=(x+1)(x-1)
$$

so $n \mid \operatorname{gcd}(n, x+1) \operatorname{gcd}(n, x-1)$. Since $x \neq 1,-1$, this 'in practice' gives a nontrivial factorization of n.

Example. For $n=35, x=29$ gives $26^{2}=841 \equiv 1(\bmod 35)$, and indeed

$$
35=n \mid \operatorname{gcd}(35,30) \operatorname{gcd}(35,28)=5 \cdot 7
$$

Theorem. Suppose n is a positive odd integer. Then

$$
\#\left\{x \in \mathbb{Z} / n \mathbb{Z}: x^{2} \equiv 1 \quad(\bmod n)\right\}=2^{t}
$$

where t is the number of distinct prime factors of n.
The proof of this involves the Chinese remainder theorem. Factor for example $n=45=3^{2} \cdot 5$. The roots are then the unique solutions to $x \equiv \pm 1(\bmod 3)$ and $x \equiv \pm 1(\bmod 5)$. For example, $x \equiv 1(\bmod 3), x \equiv 1(\bmod 5)$ gives $x \equiv 1$ $(\bmod 45)$, whereas $x \equiv 1(\bmod 3)$ and $x \equiv-1(\bmod 5)$ gives $x \equiv 19(\bmod 45)$ and $19^{2}=361 \equiv 1(\bmod 45)$.

Here, then, is the algorithm in the claim.
(1) Write $m=2^{k} \cdot u$ where u is odd and $k \geq 1$. [Note: m is even, take $a=-1$.]
(2) Pick $a \in \mathbb{Z} / n \mathbb{Z}, a \neq 0$, at random.
(3) Compute $a^{u} \in \mathbb{Z} / n \mathbb{Z}$. If $a^{u} \equiv 1$, pronounce failure and go back to the previous step.
(4) $\left[\right.$ Suppose $a^{u} \neq 1$.] By repeated squarings, compute $a^{2 u}=\left(a^{u}\right)^{2}, a^{2^{2} u}=$ $\left(a^{2 u}\right)^{2}$, and so on, until for the first time we have $a^{2^{i} u}=1$. [Note: If $a \in(\mathbb{Z} / n \mathbb{Z})^{*}$ then this happens for $i=k$ and maybe earlier.]
(5) Put $x=a^{2^{i-1}} u$. [Note $i \geq 1$.] [Then $x \neq 1, x^{2}=1$.] If $x=-1$, pronounce failure and go back to (2).
(6) $\left[\right.$ Now $x \neq-1$.] Compute $\operatorname{gcd}(n, x+1)=n_{+}, \operatorname{gcd}(n, x-1)=n_{-}$. Then $n=n_{+} n_{-}$is a nontrivial factorization, and n_{+}and n_{-}can be factored recursively. [With the same m.]

[^0](7) If no $i<k$ can be found in (4), then compute $\operatorname{gcd}(a, n)$ [it is >1 and $<n$] and factor $\operatorname{gcd}(a, n)$ and $n / \operatorname{gcd}(a, n)$ recursively.
(8) If 'many' choices of a lead to failure in (3) or (5), then 'most likely' n is of the form p^{ℓ} with p prime and $\ell \geq 1$.
The heuristics in (8) are explained by the following theorem:
Theorem. Suppose n has at least 2 distinct (odd) prime factors (so $t \geq 2$). Then the number of $a \in \mathbb{Z} / n \mathbb{Z}$ such that $a \neq 0$, a leads to failure in (3) or (5) above has
$$
\frac{\#\{a \in \mathbb{Z} / n \mathbb{Z}: a \neq 0, a \text { fails }\}}{n-1}<\frac{1}{2}
$$

[^0]: This is some of the material covered March 5, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math. berkeley.edu.

