RSA

MATH 195

ALGEBRAIC SETUP
We begin with a theorem from group theory:

Theorem (Lagrange). If G is a finite group, #G = n < oo, then for all g € G,
one has g"" = e.

Quick proof, G abelian. Fix g € G, then G — G by x — gz is bijective (the map
1

T +— g~ 'z is its inverse. Hence
[Tv=1I0x)=9"]]=
yeG zeG zeG
soe=g". O

Special case: Let k be a finite field, #k = ¢. Then for all a € k*, a97! = 1.
Apply Lagrange’s theorem to G = k* = k \ {0}. Including a@ = 0, we have for all
a€k, al=a.

Ezample. If k = F, = Z/pZ, for p prime, then o = a for all a € Z/pZ, in other
words, we have the (little) theorem of Fermat: for all integers a € Z, a? = a
(mod p) for p prime.

Notice that for all @ € (Z/pZ)*, a?~' = 1, a®*®=Y = 1, and so on, so that a’ = 1
if £ =0 (mod p—1). Then for all @ € Z, and all m € Z>( such that m =1
(mod p — 1), a™ = a (mod p).

Proposition. Let p and q be two prime numbers, p # q, and put n = pq. Then
for all positive integers m =1 (mod lem(p — 1,q — 1)) and all a € Z/nZ, one has
a™ = a (in Z/nZ), which is to say

m —

a™ =a (mod n)
for all integers a.

Recall that the least common multiple of integers k and £ is the smallest positive
integer divisible both by k and by ¢. For example, lem(12,18) = 36. Note that
lem(k, ¢) = k€/ ged(k, ). Note then that if m =1 (mod (p—1)(¢—1)), then m =1
(mod lem(p — 1,q —1)).

This proposition is the backbone of the RSA cryptosystem.

Proof. Take a € Z. Then m = 1 (mod p — 1), since lem(p — 1,g — 1) | (m — 1)
but by definition (p — 1) | lem(p — 1,¢ — 1). So by Fermat’s little theorem, a™ = a
(mod p) which is to say p | (a™ — a). The same is true for ¢, so ¢ | (™ — a). Hence
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n = pq | (a™ — a), since it is divisible by these distinct primes, and hence ™ = a
(mod n). O

Remark. We can get this from Lagrange’s theorem. We take G = (Z/nZ)*. We
have

#G = d(n) = d(pq) = ¢(p)d(q) = (p —1)(g — 1)
Therefore for all a € (Z/nZ)*, a»~V(@=1) =1 (mod pq). But this only gives us the
statement for the product (p — 1)(¢ — 1), and only for elements a € (Z/nZ)*.

Ezample. Take p =5,¢="7, and lem(p—1,¢—1) = lem(4,6) = 12. Take m =13 =
1 (mod 12), and a = 2, then 2!3 =2 (mod 35), hence 5-7 | 8190 =2-3%-5-7-13.

Note that for all m = 1 (mod p — 1), 2™ = 2 (mod p), so 23 = 2 (mod p) for
every prime p for which (p—1) | 12,i.e. p—1=1,2,3,4,6,12, or p = 2,3,4,5,7,13,
but 4 is not prime, so we could have known already that 2-3-5-7-13 | 8190.

RSA CRYPTOSYTEM

Recall we have Alice sending a message to Bob, with Eve listening.

The RSA-system is a block cipher, P = C = Z/nZ for an integer n = pq, where
n (the modulus) is known to everybody, but the prime factors p, ¢ are known only
to Bob. We need in practice p and ¢ to be very large (over 100 digits, say). We
take K to be the set of positive integers relatively prime to lem(p — 1,¢ — 1). The
encryption key e € K is known to everyone, but the decryption key d € K is known
only to Bob. Then Alice encrypts:

E:PxK—-C
E(a,e) =a® (mod n)
Eve knows a°, e, and n, but does not know a.
To decrypt, Bob
D:CxK—P
D(b,e) =b?  (mod n)
where ed =1 (mod lem(p — 1,9 — 1)).
Claim. For all a,e, D(E(a,e),e) = a, since
D(E(a,e),e) = D(a®,e) = (a°) = a® =a (mod n)
by the proposition.
Warning: Given n = pq, and a multiple of lem(p — 1,¢ — 1), one can compute p

and ¢. For example, in the special case that we are given ¢(n) = (p—1)(¢—1) =
pqg—p— q+ 1, we note that
(z-p)z—q)=2"-(p+qr+pg=2"—(n+1—-¢(n))z+n.

is a polynomial which gives the values of p and ¢ by the quadratic formula. There-
fore the secrets are in some sense equivalent: knowing p, ¢ is equivalent to knowing
¢(n), and vice versa.

Why is prime factorization a difficult problem? Only a historical one: it is
an age-old problem, for centuries people have been thinking about it, but no fast
methods have been arrived upon.



