RSA

Algebraic Setup

We begin with a theorem from group theory:
Theorem (Lagrange). If G is a finite group, $\# G=n<\infty$, then for all $g \in G$, one has $g^{n}=e$.

Quick proof, G abelian. Fix $g \in G$, then $G \rightarrow G$ by $x \mapsto g x$ is bijective (the map $x \mapsto g^{-1} x$ is its inverse. Hence

$$
\prod_{y \in G} y=\prod_{x \in G}(g x)=g^{n} \prod_{x \in G} x
$$

so $e=g^{n}$.
Special case: Let k be a finite field, $\# k=q$. Then for all $\alpha \in k^{*}, \alpha^{q-1}=1$. Apply Lagrange's theorem to $G=k^{*}=k \backslash\{0\}$. Including $\alpha=0$, we have for all $\alpha \in k, \alpha^{q}=\alpha$.

Example. If $k=\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$, for p prime, then $a^{p}=a$ for all $a \in \mathbb{Z} / p \mathbb{Z}$, in other words, we have the (little) theorem of Fermat: for all integers $a \in \mathbb{Z}, a^{p} \equiv a$ $(\bmod p)$ for p prime.

Notice that for all $a \in(\mathbb{Z} / p \mathbb{Z})^{*}, a^{p-1}=1, a^{2(p-1)}=1$, and so on, so that $a^{\ell}=1$ if $\ell \equiv 0(\bmod p-1)$. Then for all $a \in \mathbb{Z}$, and all $m \in \mathbb{Z}_{\geq 0}$ such that $m \equiv 1$ $(\bmod p-1), a^{m} \equiv a(\bmod p)$.

Proposition. Let p and q be two prime numbers, $p \neq q$, and put $n=p q$. Then for all positive integers $m \equiv 1(\bmod \operatorname{lcm}(p-1, q-1))$ and all $a \in \mathbb{Z} / n \mathbb{Z}$, one has $a^{m}=a($ in $\mathbb{Z} / n \mathbb{Z})$, which is to say

$$
a^{m} \equiv a \quad(\bmod n)
$$

for all integers a.
Recall that the least common multiple of integers k and ℓ is the smallest positive integer divisible both by k and by ℓ. For example, $\operatorname{lcm}(12,18)=36$. Note that $\operatorname{lcm}(k, \ell)=k \ell / \operatorname{gcd}(k, \ell)$. Note then that if $m \equiv 1(\bmod (p-1)(q-1))$, then $m \equiv 1$ $(\bmod \operatorname{lcm}(p-1, q-1))$.

This proposition is the backbone of the RSA cryptosystem.
Proof. Take $a \in \mathbb{Z}$. Then $m \equiv 1(\bmod p-1)$, since $\operatorname{lcm}(p-1, q-1) \mid(m-1)$ but by definition $(p-1) \mid \operatorname{lcm}(p-1, q-1)$. So by Fermat's little theorem, $a^{m} \equiv a$ $(\bmod p)$ which is to say $p \mid\left(a^{m}-a\right)$. The same is true for q, so $q \mid\left(a^{m}-a\right)$. Hence

[^0]$n=p q \mid\left(a^{m}-a\right)$, since it is divisible by these distinct primes, and hence $a^{m} \equiv a$ $(\bmod n)$.
Remark. We can get this from Lagrange's theorem. We take $G=(\mathbb{Z} / n \mathbb{Z})^{*}$. We have
$$
\# G=\phi(n)=\phi(p q)=\phi(p) \phi(q)=(p-1)(q-1)
$$

Therefore for all $a \in(\mathbb{Z} / n \mathbb{Z})^{*}, a^{(p-1)(q-1)} \equiv 1(\bmod p q)$. But this only gives us the statement for the product $(p-1)(q-1)$, and only for elements $a \in(\mathbb{Z} / n \mathbb{Z})^{*}$.

Example. Take $p=5, q=7$, and $\operatorname{lcm}(p-1, q-1)=\operatorname{lcm}(4,6)=12$. Take $m=13 \equiv$ $1(\bmod 12)$, and $a=2$, then $2^{13} \equiv 2(\bmod 35)$, hence $5 \cdot 7 \mid 8190=2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$.

Note that for all $m \equiv 1(\bmod p-1), 2^{m} \equiv 2(\bmod p)$, so $2^{13} \equiv 2(\bmod p)$ for every prime p for which $(p-1) \mid 12$, i.e. $p-1=1,2,3,4,6,12$, or $p=2,3,4,5,7,13$, but 4 is not prime, so we could have known already that $2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \mid 8190$.

RSA Cryptosytem

Recall we have Alice sending a message to Bob, with Eve listening.
The RSA-system is a block cipher, $\mathcal{P}=\mathcal{C}=\mathbb{Z} / n \mathbb{Z}$ for an integer $n=p q$, where n (the modulus) is known to everybody, but the prime factors p, q are known only to Bob. We need in practice p and q to be very large (over 100 digits, say). We take \mathcal{K} to be the set of positive integers relatively prime to $\operatorname{lcm}(p-1, q-1)$. The encryption key $e \in \mathcal{K}$ is known to everyone, but the decryption key $d \in \mathcal{K}$ is known only to Bob. Then Alice encrypts:

$$
\begin{aligned}
E: \mathcal{P} \times \mathcal{K} & \rightarrow \mathcal{C} \\
E(a, e) & =a^{e} \quad(\bmod n)
\end{aligned}
$$

Eve knows a^{e}, e, and n, but does not know a.
To decrypt, Bob

$$
\begin{aligned}
D: \mathcal{C} \times \mathcal{K} & \rightarrow \mathcal{P} \\
D(b, e) & =b^{d} \quad(\bmod n)
\end{aligned}
$$

where $e d \equiv 1(\bmod \operatorname{lcm}(p-1, q-1))$.
Claim. For all $a, e, D(E(a, e), e)=a$, since

$$
D(E(a, e), e)=D\left(a^{e}, e\right)=\left(a^{e}\right)^{d}=a^{d e} \equiv a \quad(\bmod n)
$$

by the proposition.
Warning: Given $n=p q$, and a multiple of $\operatorname{lcm}(p-1, q-1)$, one can compute p and q. For example, in the special case that we are given $\phi(n)=(p-1)(q-1)=$ $p q-p-q+1$, we note that

$$
(x-p)(x-q)=x^{2}-(p+q) x+p q=x^{2}-(n+1-\phi(n)) x+n .
$$

is a polynomial which gives the values of p and q by the quadratic formula. Therefore the secrets are in some sense equivalent: knowing p, q is equivalent to knowing $\phi(n)$, and vice versa.

Why is prime factorization a difficult problem? Only a historical one: it is an age-old problem, for centuries people have been thinking about it, but no fast methods have been arrived upon.

[^0]: This is some of the material covered February 26, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

