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Algebraic Setup

We begin with a theorem from group theory:

Theorem (Lagrange). If G is a finite group, #G = n < ∞, then for all g ∈ G,
one has gn = e.

Quick proof, G abelian. Fix g ∈ G, then G → G by x 7→ gx is bijective (the map
x 7→ g−1x is its inverse. Hence∏

y∈G

y =
∏
x∈G

(gx) = gn
∏
x∈G

x

so e = gn. �

Special case: Let k be a finite field, #k = q. Then for all α ∈ k∗, αq−1 = 1.
Apply Lagrange’s theorem to G = k∗ = k \ {0}. Including α = 0, we have for all
α ∈ k, αq = α.

Example. If k = Fp = Z/pZ, for p prime, then ap = a for all a ∈ Z/pZ, in other
words, we have the (little) theorem of Fermat: for all integers a ∈ Z, ap ≡ a
(mod p) for p prime.

Notice that for all a ∈ (Z/pZ)∗, ap−1 = 1, a2(p−1) = 1, and so on, so that a` = 1
if ` ≡ 0 (mod p − 1). Then for all a ∈ Z, and all m ∈ Z≥0 such that m ≡ 1
(mod p− 1), am ≡ a (mod p).

Proposition. Let p and q be two prime numbers, p 6= q, and put n = pq. Then
for all positive integers m ≡ 1 (mod lcm(p− 1, q − 1)) and all a ∈ Z/nZ, one has
am = a (in Z/nZ), which is to say

am ≡ a (mod n)

for all integers a.

Recall that the least common multiple of integers k and ` is the smallest positive
integer divisible both by k and by `. For example, lcm(12, 18) = 36. Note that
lcm(k, `) = k`/ gcd(k, `). Note then that if m ≡ 1 (mod (p−1)(q−1)), then m ≡ 1
(mod lcm(p− 1, q − 1)).

This proposition is the backbone of the RSA cryptosystem.

Proof. Take a ∈ Z. Then m ≡ 1 (mod p − 1), since lcm(p − 1, q − 1) | (m − 1)
but by definition (p− 1) | lcm(p− 1, q − 1). So by Fermat’s little theorem, am ≡ a
(mod p) which is to say p | (am− a). The same is true for q, so q | (am− a). Hence
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n = pq | (am − a), since it is divisible by these distinct primes, and hence am ≡ a
(mod n). �

Remark. We can get this from Lagrange’s theorem. We take G = (Z/nZ)∗. We
have

#G = φ(n) = φ(pq) = φ(p)φ(q) = (p− 1)(q − 1).
Therefore for all a ∈ (Z/nZ)∗, a(p−1)(q−1) ≡ 1 (mod pq). But this only gives us the
statement for the product (p− 1)(q − 1), and only for elements a ∈ (Z/nZ)∗.

Example. Take p = 5, q = 7, and lcm(p−1, q−1) = lcm(4, 6) = 12. Take m = 13 ≡
1 (mod 12), and a = 2, then 213 ≡ 2 (mod 35), hence 5 · 7 | 8190 = 2 · 32 · 5 · 7 · 13.

Note that for all m ≡ 1 (mod p − 1), 2m ≡ 2 (mod p), so 213 ≡ 2 (mod p) for
every prime p for which (p−1) | 12, i.e. p−1 = 1, 2, 3, 4, 6, 12, or p = 2, 3, 4, 5, 7, 13,
but 4 is not prime, so we could have known already that 2 · 3 · 5 · 7 · 13 | 8190.

RSA Cryptosytem

Recall we have Alice sending a message to Bob, with Eve listening.
The RSA-system is a block cipher, P = C = Z/nZ for an integer n = pq, where

n (the modulus) is known to everybody, but the prime factors p, q are known only
to Bob. We need in practice p and q to be very large (over 100 digits, say). We
take K to be the set of positive integers relatively prime to lcm(p− 1, q − 1). The
encryption key e ∈ K is known to everyone, but the decryption key d ∈ K is known
only to Bob. Then Alice encrypts:

E : P ×K → C
E(a, e) = ae (mod n)

Eve knows ae, e, and n, but does not know a.
To decrypt, Bob

D : C × K → P

D(b, e) = bd (mod n)

where ed ≡ 1 (mod lcm(p− 1, q − 1)).

Claim. For all a, e, D(E(a, e), e) = a, since

D(E(a, e), e) = D(ae, e) = (ae)d = ade ≡ a (mod n)

by the proposition.

Warning: Given n = pq, and a multiple of lcm(p− 1, q − 1), one can compute p
and q. For example, in the special case that we are given φ(n) = (p− 1)(q − 1) =
pq − p− q + 1, we note that

(x− p)(x− q) = x2 − (p + q)x + pq = x2 − (n + 1− φ(n))x + n.

is a polynomial which gives the values of p and q by the quadratic formula. There-
fore the secrets are in some sense equivalent: knowing p, q is equivalent to knowing
φ(n), and vice versa.

Why is prime factorization a difficult problem? Only a historical one: it is
an age-old problem, for centuries people have been thinking about it, but no fast
methods have been arrived upon.


