DES AND SDES

MATH 195

First, some notation: $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$. In general, \mathbb{F}_{q} denotes a finite field with q elements: So $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ if p is prime; in general, q needs to be of the form $q=p^{n}$, with p prime and $n \geq 1$. Note: $\mathbb{F}_{p^{n}} \neq \mathbb{Z} / p^{n} \mathbb{Z}$.

In SDES and DES, we have $\mathcal{P}=\mathcal{C}=\mathbb{F}_{2}^{2 k=8}$ or $64, k=4$ or $32, \mathcal{K}=\mathbb{F}_{2}^{10}$ or ${ }^{56}$, $\mathcal{S}=\mathbb{F}_{2}^{8}$ or 48 (the subkey space), $t=2$ or 16 (the number of rounds). In order to define

$$
\begin{aligned}
E: \mathcal{P} \times \mathcal{K} & \rightarrow \mathcal{P} \\
(z, K) & \mapsto E_{K}(z)
\end{aligned}
$$

and similarly D_{K}, we need three ingredients:

- A map $\mathcal{K} \rightarrow \mathcal{S}^{t}=\underbrace{\mathcal{S} \times \cdots \times \mathcal{S}}_{t}, K \mapsto\left(K_{1}, \ldots, K_{t}\right)$;
- A round function $F: \mathbb{F}_{2}^{k} \times \mathcal{S} \rightarrow \mathbb{F}_{2}^{k}$;
- An initial permutation ι (of \mathcal{P}).

Given these three ingredients, E and D are defined as follows:

$$
E_{K}(z)=\left(\iota^{-1} \circ G_{t} \circ s \circ \cdots \circ s \circ G_{2} \circ s \circ G_{1} \circ \iota\right)(z)
$$

where $s(x, y)=(y, x)$ and $G_{i}(x, y)=\left(x+F\left(y, K_{i}\right), y\right)$ and therefore

$$
D_{K}(z)=\left(\iota^{-1} \circ G_{1} \circ s \circ \cdots \circ s \circ G_{t-1} \circ s \circ G_{t} \circ \iota\right)(z) .
$$

The initial permutation $\iota: \mathbb{F}_{2}^{2 k} \rightarrow \mathbb{F}_{2}^{2 k}$ permutes the $2 k$ coordinates according to the following formula [see p. 53 in the text]: in $\operatorname{SDES}: \iota\left(z_{1}, \ldots, z_{8}\right)=$ $\iota\left(z_{2}, z_{6}, z_{3}, z_{1}, z_{4}, z_{8}, z_{5}, z_{7}\right)$, and in DES [see Table 3.2(a), p. 68],

$$
\iota\left(z_{1}, \ldots, z_{64}\right)=\left(z_{58}, z_{50}, \ldots, z_{15}, z_{7}\right)
$$

As a check, we include "parity bits" in our key. We let

$$
\mathcal{K}=\left\{\left(k_{1}, \ldots, k_{64}\right) \in \mathbb{F}_{2}^{64}: \sum_{i=8 j+1}^{8(j+1)} k_{i}=0, j=0,1, \ldots, 7\right\}
$$

i.e. $k_{1}+k_{2}+\cdots+k_{8}=0, k_{9}+k_{10}+\cdots+k_{16}=0, \ldots, k_{57}+\cdots+k_{64}=0$. We let the least significant bit in each byte be treated as extraneous information, so we have only 56 meaningful bits.

Now the subkey generation is a map $K \mapsto\left(K_{1}, \ldots, K_{t}\right)$ (for DES) where $K \in \mathbb{F}_{2}^{64}$, $K_{i} \in \mathbb{F}_{2}^{48}$:

$$
K_{i}=\left(\tau \circ \lambda^{n_{i}} \circ \sigma\right)(K):
$$

where [Table 3.4(a), p. 72]

$$
\sigma\left(k_{1}, \ldots, k_{56}, \ldots, k_{64}\right)=\left(k_{57}, k_{49}, k_{41}, \ldots, k_{12}, k_{4}\right)
$$

This is some of the material covered February 19-21, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.
(recall we write the 56 bits as 64 bits, using the bits k_{8}, \ldots, k_{64} as parity bits), [Table 3.4(b), p. 72]

$$
\tau\left(k_{1}, \ldots, k_{56}\right)=\left(k_{14}, k_{17}, \ldots, k_{29}, k_{32}\right) \in \mathbb{F}_{2}^{48}
$$

and

$$
\lambda\left(k_{1}, \ldots, k_{28}, k_{29}, \ldots, k_{56}\right)=\left(k_{2}, k_{3}, \ldots, k_{28}, k_{1}, k_{30}, k_{31}, \ldots, k_{56}, k_{29}\right)
$$

and [Table 3.4(c), p. 72] $n_{1}=1, n_{2}=2, n_{3}=4, \ldots, n_{16}=28=0$.
The round function $F: \mathbb{F}_{2}^{32} \times \mathbb{F}_{2}^{48} \rightarrow \mathbb{F}_{2}^{32}$ is equally explicit. To compute $F(x, k)$, expand

$$
x=\left(\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{5} & x_{6} & x_{7} & x_{8} \\
& \vdots & & \\
x_{29} & x_{30} & x_{31} & x_{32}
\end{array}\right)
$$

to

$$
\epsilon(x)=\left(\begin{array}{cccccc}
x_{32} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
& \vdots & & & & \\
x_{2} 8 & x_{29} & x_{30} & x_{31} & x_{32} & x_{1}
\end{array}\right) ;
$$

write k also as an 8×6-matrix

$$
k=\left(\begin{array}{cccc}
k_{1} & k_{2} & \ldots & k_{6} \\
& & \vdots & \\
k_{43} & k_{44} & \ldots & k_{48}
\end{array}\right)
$$

and then add them:

$$
k+\epsilon(x)=\left(\begin{array}{ccc}
k_{1}+x_{32} & \ldots & x_{5}+k_{6} \\
& \vdots & \\
k_{43}+x_{28} & \ldots & x_{1}+k_{48}
\end{array}\right) .
$$

Then apply the i th S-box S_{i} to the i th row of that matrix, $i=1, \ldots, 8$ [p. 71]. This compresses the bits on the basis of a table-lookup. Finally, follow it by the permutation of the 32 positions [Table $3.2(\mathrm{~d})$, p. 68]. That results in an 8×4 matrix, which read as a vector gives $F(x, k) \in \mathbb{F}_{2}^{32}$.

For a word about design criteria-diffusion and confusion, resistance against differential cryptanalysis and linear cryptanalysis, ease of use and analysis-see the text [e.g. p. 60/61].

