THE HILL CIPHER (CONTINUED): COMPUTING THE INVERSE OF A MATRIX

MATH 195

Recall that given a commutative ring R, we consider the $k \times k$ square matrices with entries in R, denoted $M(k, R)$. We have a map det : $M(k, R) \rightarrow R$ called the determinant. We also have the following rule of thumb: All usual rules for computing determinants avoiding divisions are valid over any commutative ring R.

Now we would like to compute inverses of a matrix. Suppose A is a $(k \times k)$ matrix over a commutative ring R, say $A=\left(a_{i j}\right)_{1 \leq i, j \leq k}, a_{i j} \in R$. Define $A^{*}=$ $\left(a_{i j}^{*}\right)_{1 \leq i, j \leq k} \in M(k, R)$ by

$$
a_{i j}^{*}=(-1)^{i+j} \operatorname{det}\left(A_{j i}\right) \in R
$$

where $A_{j i}$ is the $(k-1) \times(k-1)$ matrix obtained from A by deleting the j th row and the i th column.
(It is important to transpose i and j : the text is wrong on this point.)
For example, if

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),
$$

then $a_{11}^{*}=a^{*}=(-1)^{2} d=d, a_{22}^{*}=d^{*}=a$, and $a_{12}^{*}=b^{*}=(-1)^{1+2} b=-b$, $a_{21}^{*}=c^{*}=-c$, so

$$
A^{*}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Note that given a ring R, the set $R^{*}=\{a \in R: \exists b \in R, a b=1\}$ of units of R is much different than the adjoint matrix A^{*} of a matrix $A \in M(k, R)$!

Then we have the following amazing fact:

$$
A A^{*}=A^{*} A=\operatorname{det}(A) I=\left(\begin{array}{cccc}
\operatorname{det}(A) & 0 & \ldots & 0 \\
0 & \operatorname{det}(A) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \operatorname{det}(A)
\end{array}\right)
$$

For example, for the 2×2 matrix above, we have

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right)=(\operatorname{det} A)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Fact. A is invertible (i.e. belongs to $G L(k, R)$) if and only if $\operatorname{det}(A) \in R^{*}$.
(Note that the text makes an error: the determinant needs to be not only nonzero but invertible!)

[^0]Proof. If A is invertible, there exists a B such that $A B=I$, hence

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(I)=1
$$

so $\operatorname{det}(A) \in R^{*}$ (the inverse is $\operatorname{det}(B)$). In the other $\operatorname{direction,~suppose~} \operatorname{det} A \in R^{*}$, then $A\left((\operatorname{det} A)^{-1} A^{*}\right)=I$, so $A^{-1}=(\operatorname{det} A)^{-1} A^{*}$.
Example. Let $R=\mathbb{Z} / 26 \mathbb{Z}, k=3$. Let

$$
K=\left(\begin{array}{ccc}
-9 & -9 & 5 \\
-5 & -8 & -5 \\
2 & 2 & -7
\end{array}\right)
$$

Then
$K^{*}=\left(\begin{array}{cc}(-8)(-7)-(-5) 2 & -((-9)(-5)-5(-5))\end{array}\right) \equiv\left(\begin{array}{ccc}-12 & -1 & 7 \\ 7 & 1 & 8 \\ 6 & 0 & 1\end{array}\right) \quad(\bmod 26)$ and indeed

$$
\left(\begin{array}{ccc}
-9 & -9 & 5 \\
-5 & -8 & -5 \\
2 & 2 & -7
\end{array}\right)\left(\begin{array}{ccc}
-12 & -1 & 7 \\
7 & 1 & 8 \\
6 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right) .
$$

Here is the "usual algorithm" for finding the inverse of a matrix over a field F. Say for example $F=\mathbb{Z} / 7 \mathbb{Z}$, and

$$
A=\left(\begin{array}{ccc}
3 & 3 & -2 \\
0 & -3 & 0 \\
2 & 2 & -2
\end{array}\right)
$$

We write down

$$
\left(\begin{array}{cccccc}
3 & 3 & -2 & 1 & 0 & 0 \\
0 & -3 & 0 & 0 & 1 & 0 \\
2 & 2 & -2 & 0 & 0 & 1
\end{array}\right) .
$$

Now we multiply the first row by the inverse $3^{-1}=-2(\bmod 7)$ to get:

$$
\left(\begin{array}{cccccc}
1 & 1 & -3 & -2 & 0 & 0 \\
0 & -3 & 0 & 0 & 1 & 0 \\
2 & 2 & -2 & 0 & 0 & 1
\end{array}\right) .
$$

Now multiply the first row by 2 and subtract it from the last row:

$$
\left(\begin{array}{cccccc}
1 & 1 & -3 & -2 & 0 & 0 \\
0 & -3 & 0 & 0 & 1 & 0 \\
0 & 0 & -3 & -3 & 0 & 1
\end{array}\right) .
$$

Now invert $(-3)^{-1}=2$ and scale the middle and bottom rows:

$$
\left(\begin{array}{cccccc}
1 & 1 & -3 & -2 & 0 & 0 \\
0 & 1 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 & 2
\end{array}\right) .
$$

Now subtract the second row from the first and add three times the last to the first:

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & -2 & -1 \\
0 & 1 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 & 2
\end{array}\right) .
$$

Recall inside the matrices $M(k, R)$, we have the invertible matrices $G L(k, R)$ called the general linear group. Inside $G L(k, R)$ we have $S L(k, R)=\{A \in M(k, R)$:
$\operatorname{det} A=1\}$, called the special linear group. Inside $S L(k, R)$ we have the elementary subgroup $E(k, R)$, those matrices that can be obtained as the product of elementary matrices. If R is a field or \mathbb{Z} or $\mathbb{Z} / n \mathbb{Z}, E(k, R)=S L(k, R)$. But it is not true for every commutative ring R : this is a fascinating field of mathematics known as K-theory.

[^0]: This is some of the material covered February 12, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math. berkeley.edu.

