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MATH 195

Recall that given a commutative ring R, we consider the k × k square matrices
with entries in R, denoted M(k,R). We have a map det : M(k,R) → R called
the determinant. We also have the following rule of thumb: All usual rules for
computing determinants avoiding divisions are valid over any commutative ring R.

Now we would like to compute inverses of a matrix. Suppose A is a (k × k)-
matrix over a commutative ring R, say A = (aij)1≤i,j≤k, aij ∈ R. Define A∗ =
(a∗ij)1≤i,j≤k ∈ M(k,R) by

a∗ij = (−1)i+j det(Aji) ∈ R

where Aji is the (k − 1)× (k − 1) matrix obtained from A by deleting the jth row
and the ith column.

(It is important to transpose i and j: the text is wrong on this point.)
For example, if

A =
(

a b
c d

)
,

then a∗11 = a∗ = (−1)2d = d, a∗22 = d∗ = a, and a∗12 = b∗ = (−1)1+2b = −b,
a∗21 = c∗ = −c, so

A∗ =
(

d −b
−c a

)
.

Note that given a ring R, the set R∗ = {a ∈ R : ∃b ∈ R, ab = 1} of units of R
is much different than the adjoint matrix A∗ of a matrix A ∈ M(k, R)!

Then we have the following amazing fact:

AA∗ = A∗A = det(A)I =


det(A) 0 . . . 0

0 det(A) . . . 0
...

...
. . .

...
0 0 . . . det(A)

 .

For example, for the 2× 2 matrix above, we have(
a b
c d

) (
d −b
−c a

)
=

(
ad− bc 0

0 ad− bc

)
= (det A)

(
1 0
0 1

)
.

Fact. A is invertible (i.e. belongs to GL(k,R)) if and only if det(A) ∈ R∗.

(Note that the text makes an error: the determinant needs to be not only nonzero
but invertible!)
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Proof. If A is invertible, there exists a B such that AB = I, hence

det(AB) = det(A) det(B) = det(I) = 1

so det(A) ∈ R∗ (the inverse is det(B)). In the other direction, suppose detA ∈ R∗,
then A((detA)−1A∗) = I, so A−1 = (det A)−1A∗. �

Example. Let R = Z/26Z, k = 3. Let

K =

−9 −9 5
−5 −8 −5
2 2 −7

 .

Then

K∗ =

(−8)(−7)− (−5)2
−((−9)(−5)− 5(−5))

 ≡

−12 −1 7
7 1 8
6 0 1

 (mod 26)

and indeed −9 −9 5
−5 −8 −5
2 2 −7

 −12 −1 7
7 1 8
6 0 1

 =

3 0 0
0 3 0
0 0 3

 .

Here is the “usual algorithm” for finding the inverse of a matrix over a field F .
Say for example F = Z/7Z, and

A =

3 3 −2
0 −3 0
2 2 −2

 .

We write down 3 3 −2 1 0 0
0 −3 0 0 1 0
2 2 −2 0 0 1

 .

Now we multiply the first row by the inverse 3−1 = −2 (mod 7) to get:1 1 −3 −2 0 0
0 −3 0 0 1 0
2 2 −2 0 0 1

 .

Now multiply the first row by 2 and subtract it from the last row:1 1 −3 −2 0 0
0 −3 0 0 1 0
0 0 −3 −3 0 1

 .

Now invert (−3)−1 = 2 and scale the middle and bottom rows:1 1 −3 −2 0 0
0 1 0 0 2 0
0 0 1 1 0 2

 .

Now subtract the second row from the first and add three times the last to the first:1 0 0 1 −2 −1
0 1 0 0 2 0
0 0 1 1 0 2

 .

Recall inside the matrices M(k,R), we have the invertible matrices GL(k, R)
called the general linear group. Inside GL(k, R) we have SL(k,R) = {A ∈ M(k,R) :
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det A = 1}, called the special linear group. Inside SL(k,R) we have the elementary
subgroup E(k,R), those matrices that can be obtained as the product of elementary
matrices. If R is a field or Z or Z/nZ, E(k,R) = SL(k,R). But it is not true for
every commutative ring R: this is a fascinating field of mathematics known as
K-theory.


