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Usually, in linear algebra we take matrices with entries in the real numbers or
some other field, but this is not strictly required. As can be seen, this extension
has some interesting consequences for cryptography.

Hill Cipher

We take P = C = (Z/nZ)k, n > 1, k ≥ 1, e.g. n = 26, k = 3. We let
K = GL(k, Z/nZ) be the general linear group, the set of (k × k)-matrices K with
entries from Z/nZ that are invertible, i.e. for which there exists a k × k-matrix L
over Z/nZ such that KL = LK = I, the k × k identity matrix:

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


We say that L is the inverse of K, or L = K−1.

For example, GL(1, Z/nZ) = (Z/nZ)∗.
The encryption is then EK(α) = Kα, where α ∈ P is viewed as a column vector.

To decrypt, we apply the inverse:

DK(EK(α)) = DK(Kα) = K−1(Kα) = (K−1K)α = Iα = α.

Elementary Matrices

How can such an invertible matrix K be obtained? For a ∈ Z/nZ, we have
elementary matrices:

Eij(a) =



1 0 . . . 0 . . . 0
0 1 . . . a . . . 0
...

...
. . .

...
...

0 0 . . . 1 . . . 0
...

...
...

. . .
...

0 0 . . . 0 . . . 1


where we take ones down the diagonal and a in the ith row and jth column.

Note that Eij(a)−1 = Eij(−a), so this matrix is invertible. To obtain a key, we
pick i1, j1, a1, . . . , it, jt, at and take

K = Ei1j1(a1)Ei2j2(a2) . . . Eitjt
(at)
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and the inverse is
K−1 = Eitjt(−at) . . . Ei1j1(−a1)

since (gh)−1 = h−1g−1.

Rings

Let us develop this theory a bit further. We can do linear algebra not just over
the real numbers or Z/nZ, but over any ring. [See §5.1 in Fraleigh for a review of
rings.]

Definition. A ring is a set R together with two operations

+ : R×R → R

(a, b) 7→ a + b

and

· : R×R → R

(a, b) 7→ a · b = ab

such that
• R is an abelian group with respect to + (with neutral element 0);
• · is associative a(bc) = (ab)c and bilinear :

a(b + c) = ab + ac

(a + b)c = ac + bc

• There is an element 1 ∈ R such that for all a ∈ R, 1a = a1 = a.

Example. Z/nZ, R, Z are rings. M(k, Z/nZ) is a ring (matrix multiplication is
associative, for example, and the identity element is the identity matrix). In fact
for any ring R, M(k,R), the set of (k × k)-matrices with entries in the ring R, is
itself a ring.

In general, a ring is not a group under multiplication (because of a lack of
inverses); we define

R∗ = {a ∈ R : ∃b ∈ R : ab = ba = 1},

and this is the group of units (or invertible elements) of R.

Example. We have for the ring Z/nZ the group (Z/nZ)∗; for R we have R∗ = R\{0};
Z∗ = {1,−1}, and M(k, Z/nZ)∗ = GL(k, Z/nZ).

Why do we need algebra for cryptography? We would like to endow our finite
sets with some bit of structure to aid us in encrypting and decrypting. This struc-
ture helps us to solve problems, such as if we remove the opposite corners of a
checkerboard and try to fill it with dominoes, if we color the squares in the ordi-
nary way we see that it cannot be done (as we have more dark squares than light
squares). In this case, we have solved a problem by putting a Z/2Z structure on
the bland set of squares of the checkerboard.

Note that R∗ = R if and only if R = {0}. If R = {0}, then certainly R∗ = R,
and conversely, if R∗ = R then 0 ∈ R∗ so 0 = 0b = 1 so a = 1a = 0a = 0, so
R = {0}.
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Not all rings are commutative, i.e. ab = ba for all a, b ∈ R: for example, for
matrices, (

1 1
0 1

) (
1 0
1 1

)
=

(
2 1
1 1

)
whereas (

1 0
1 1

) (
1 1
0 1

)
=

(
1 1
1 2

)
If 0 6= 1, then 1 = 0 + 1 6= 1 + 1 = 2, so the matrix ring is not commutative, hence
M(k, R) is not commutative if k ≥ 2, #R > 1.

Determinants

[For a review of determinants, you should consult any linear algebra text, for
example, Hill, Elementary Linear Algebra with Applications. Elementary matrices
are covered in §1.4, Determinants are covered in Chapter 2.]

Now we return to linear algebra over our ring Z/nZ. The set of all (k × k)-
matrices over Z/nZ is denoted M(k, Z/nZ) ⊃ GL(k, Z/nZ). The determinant is
the map

det : M(k, Z/nZ) → Z/nZ

det(A) =
∑

σ∈Sym k

ε(σ)
k∏

i=1

aiσ(i)

A = (aij)1≤i,j≤k where aij ∈ Z/nZ, and the sum is taken over all permutations
on the set of indices 1, . . . , k, where ε(σ) is the sign of the permutation (+1 if the
permutation is even, i.e. composed of an even number of transpositions, −1 if σ is
odd).

The determinant has the following properties:
• detA ∈ (Z/nZ)∗ if and only if A is invertible.
• For all matrices A,B ∈ M(k, Z/nZ), det(AB) = (detA)(detB) in Z/nZ.
• Every K ∈ M(k, Z/nZ) with det K = 1 is the product of finitely many

elementary matrices of the form Eij(a).
The first property (multiplicativity) is quite useful: If A is invertible, then there

is a matrix B such that AB = I, so det(A) det(B) = det(AB) = det(I) = 1, so
detA is invertible in Z/nZ, which proves one implication of the first property.

Or, more generally, let R be a commutative ring. We can define the determinant

det : M(k,R) → R.

E.g. for k = 2 given by

det
(

a b
c d

)
= ad− bc

for any such matrix, a, b, c, d ∈ R. Notice that then intechanging rows, we get

det
(

c d
a b

)
= cb− da = −(ad− bc)

since R is commutative.
Rule of thumb: All familiar rules about computing determinants that do not

involve division are valid for square matrices over any commutative ring.
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For k = 3, we have

det

a b c
d e f
g h i

 = aei− afh− bdi + bfg + cdh− ceg

where we take all permutations with the appropriate sign: we end up with k! terms,
numbered by the permutations, in general,

det(aij)1≤i,j≤k =
∑

σ∈Sym k

ε(σ)
k∏

i=1

aiσ(i)

as before.
Determinants are multiplicative, but not additive: even though

det(AB) = det(A) det(B)

we do not necessarily have det(A + B) = det(A) + det(B).
There are a number of rules for computing determinants: in particular, we can

row-reduce our matrix: take the matrix over Z/26Z:

K =

17 17 5
21 18 21
2 2 19

 ≡

−9 −9 5
−5 −8 −5
2 2 −7

 (mod 26).

We can subtract the second column from the first, and this will not change the
determinant:

det K = det

0 −9 5
3 −8 −5
0 2 −7

 = −3 det
(
−9 5
2 −7

)
= −3(63− 10) ≡ −3 (mod 26),

where we have used the property that given a zero, we can forget that row and
column when expanding the determinant.

Using row-reduction to calculate determinants will save a great deal of time and
is much more efficient than the general expansion (involving k! terms).

We may on occasion like to divide, so we revise our rule:
Rule: All familiar rules about computing determinants are valid for square ma-

trices over any field.

Definition. A field is a commutative ring R with the property that R∗ = R \ {0}.

Example. R is a field, but Z is not a field. Z/nZ is a field if and only if n is prime.

Since 26 = 2 · 13, the ring Z/26Z is not a field. Instead, if you know about this,
we can use the Chinese remainder theorem and reduce the task to a computation
modulo 2

detK ≡ det

1 1 1
1 0 1
0 0 1

 ≡ 1 (mod 2)

and modulo 13

det K ≡ det

 4 4 5
−5 5 −5
2 2 6

 ≡ 10 (mod 13)

hence, det K ≡ 23 (mod 26).
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Or, instead, we can change the size of the alphabet, replace 26 by a prime
number, e.g. 29 or maybe 257.


