
THE EUCLIDEAN ALGORITHM

MATH 195

Recall that
(Z/nZ)∗ = {a ∈ Z/nZ : gcd(a, n) = 1}

is a group under multiplication. In particular, every element a has an inverse a−1?
But how can it be found, if not by luck?

Euclid’s algorithm: Computing the GCD

[This material is covered in §7.5 of the textbook.]
In order to compute the inverse of an element of Z/nZ, first we must check if

(Z/nZ)∗, that is, test if gcd(a, n) = 1. Often this is done (when the numbers are
small) by calculating the prime factorization of each number: e.g. 8085 = 3·5·72 ·11,
7560 = 23 ·33 ·5 ·7, has gcd(8085, 7560) = 3 ·5 ·7 = 105. Indeed, it is enough to know
the prime factorization of just one of the numbers; however, when the numbers get
large, this method becomes impractical.

There is another algorithm, due to Euclid, as follows:

8085 = 1 · 7560 + 525
7560 = 14 · 525 + 210
525 = 2 · 210 + 105
210 = 2 · 105

The result of this computation is that 105 is the greatest common divisor of 8085
and 7560.

Fact. The probability that two randomly chose integers are coprime equals 6/π2 =
0.607927 . . . . That is,

lim
x→∞

#{(a, n) : 0 < a ≤ x, 0 < n ≤ x, gcd(a, n) = 1}
x2

=
6
π2

.

For example, the “random” integers 961 and 733 by the Euclidean algorithm
gives us:

961 = 1 · 733 + 288
733 = 3 · 288 + 49
228 = 4 · 49 + 32
49 = 1 · 32 + 17
32 = 1 · 17 + 15
17 = 1 · 15 + 2
15 = 7 · 2 + 1
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Therefore these integers are indeed coprime!

The Semi-Extended Euclidean Algorithm

We can in fact extend this algorithm to compute the inverse of 733 modulo 961,
as follows:

0a ≡ 961 (mod 961)
1a ≡ 733

−(1(1) + 0)a = −a ≡ 228

(3(1) + 1)a = 4a ≡ 49

−(4(4) + 1)a = −17a ≡ 32

(1(17) + 4)a = 21a ≡ 17

−(1(21) + 17)a = −38a ≡ 15

(1(38) + 21)a = 59a ≡ 2

−(7(59) + 38) = −451a ≡ 1 (mod 961)

The numbers 1, 3, 4, 1, 1, 1, 7 are the quotients in the previous calculation (not
the remainders).

We write this symbolically as follows: starting with a0 = n, a1 = a, ai+1 the
remainder of ai−1 upon division by ai, we continue until we reach at = 0, so we get
the decreasing sequence of integers

a0 = n > a1 > a2 > · · · > at−1 > at = 0

and in this case at−1 = gcd(a, n). We would like these numbers to decrease with
some speed, so we have an algorithm which is reasonably fast.

Claim. ai+1 < ai−1/2.

Proof. If ai ≤ ai−1/2, then ai+1 < ai ≤ ai−1/2.
Otherwise, ai > ai−1/2, in which case we substract the number directly, i.e.

ai+1 = ai−1 − ai < ai/2. �

Therefore if we write our numbers in base 2, then the Euclidean algorithm cannot
take longer than twice the number of binary digits of our number to complete. Since
the binary length differs from the number of decimal digits by the factor log2 10, this
algorithm take only essentially only the logarithm of the number (approximately
the length of the number) to complete.

What happens in the extended Euclidean algorithm if the numbers are not co-
prime? Returning to our example of 8085 and 7560, then we obtain

0a ≡ 8085 (mod 8085)
1a ≡ 7560

−1a ≡ 525
15a ≡ 210

−31a ≡ 105

77a ≡ 0 (mod 8085).

Notice the significance of the number 77: it is n/ gcd(a, n) = (3 ·5 ·72 ·11)/(3 ·5 ·7).
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The Extended Euclidean Algorithm

We can actually keep track of more, if we want more information. Returning to
our example (n = 8085, a = 7560):

1n + 0a = 8085
0n + 1a = 7560
1n− 1a = 525

−14n + 15a = 210
29n− 31a = 105

−72n + 77a = 0.

Notice that 72 = a/ gcd(a, n) = (23 · 33 · 5 · 7)/(3 · 5 · 7). The previous line,

29n− 31a = 105,

is also of some real interest:

Fact. If a, n ∈ Z, then there are integers x and y such that xn + ya = gcd(a, n).

For the reader with a bit of group theory, translate the statement as: any
subgroup of an infinite cyclic group Z is cyclic. So, for example, the subgroup
Za + Zn ⊂ Z must be generated by a single element, namely, gcd(a, n).


