GROUP THEORY

MATH 195

The reference for the material covered here is any abstract algebra book; the text by Fraleigh, A First Course in Abstract Algebra, sixth edition, is often used at Berkeley.

Group theory

Definition. A group is a set \mathcal{G} together with a map $*: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ such that:

- $(a * b) * c=a *(b * c)$ for all $a, b, c \in \mathcal{G}$;
- There exists an $e \in G$ such that for all $a \in \mathcal{G}, e * a=a * e=a$;
- For all $a \in \mathcal{G}$, there exists an $a^{\prime} \in \mathcal{G}$ such that $a * a^{\prime}=a^{\prime} * a=e$.

If you have never seen groups before and want some practice (or examples), check out SS1.1-1.3 in Fraleigh.

Given an element $b * a$, we can recover b by multiplying by a^{\prime} :

$$
(b * a) * a^{\prime}=b *\left(a * a^{\prime}\right)=b * e=b .
$$

Notice how this looks like "decryption".
Many of our groups (but not all) will be abelian: $a * b=b * a$.
Example. The group of permutations on the (finite) set S, which we called $\mathcal{G}=$ $\operatorname{Sym} S$, has $*=\circ$ (the group law is composition), $e=\mathrm{id}_{S}$, and $f^{\prime}=f^{-1}$. This group is nonabelian if S has more than 2 elements. (See $\S 2.1$ in Fraleigh.)

Here is notation which is often used for groups:

"Additive" group (usually abelian)	"Multiplicative" group
$*=+$	$*=0, \times,$,
$a^{\prime}=-a$	$a^{\prime}=a^{-1}$
$e=0$	$e=1$, id
multiple	power
$n \cdot a=n a$	a^{n}
$0 a=0$	$a^{0}=1$
$(-n) a=n(-a)$	$a^{-n}=\left(a^{-1}\right)^{n}$
$(m+n) a=m a+n a$	$a^{m+n}=a^{m} a^{n}$

The Group $(\mathbb{Z} / n \mathbb{Z})^{*}$

Notice that the set $\mathbb{Z} / 26 \mathbb{Z}=\{0,1,2, \ldots, 25\}$ with the addition law (taking the remainder modulo 26) is a group. However, using the multiplication law, it is not a group. Although it satisfies the associativity law and has an identity element 1 , not every element has an inverse: for example 0 has no inverse. In fact, any element which is not relatively prime to 26 - e.g. 12 , since if $12 a^{\prime}=1$ in $\mathbb{Z} / 26 \mathbb{Z}$,

[^0]then $12 a^{\prime}=1+26 n$ for some $n \in \mathbb{Z}$, which is impossible as the left-hand side is even whereas the right hand side is odd.

The set $\mathbb{Z} / n \mathbb{Z}=\{0,1, \ldots, n-1\}$ is never a group unless $n=1$, in which the group is just $\{0\}$. The set

$$
\mathbb{Z} / n \mathbb{Z} \backslash\{0\}=\{1,2, \ldots, n-1\}
$$

is a group when n is prime and not otherwise: it fails even to be closed-for example, $2 \cdot 13 \equiv 0(\bmod 26)$ is no longer in the group. In general, however, we may take the set of units

$$
(\mathbb{Z} / n \mathbb{Z})^{*}=\{a \in \mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(a, n)=1\}
$$

and this is a group under multiplication. (For this, see $\S 5.3$, especially Theorem 5.3.6 in Fraleigh. It is also covered in SS7.1-7.3 of our text, Stallings.)

Example. Since $26=2 \cdot 13$,

$$
(\mathbb{Z} / 26 \mathbb{Z})^{*}=\{1,3,5,7,9,11,15,17,19,21,23,25\}
$$

a group with 12 elements. We have $7 \cdot 11 \equiv 25 \equiv-1(\bmod 26)$, and therefore $7^{-1} \equiv-11 \equiv 15(\bmod 26)$.

In general, the number of elements of this multiplicative group is

$$
\#(\mathbb{Z} / n \mathbb{Z})^{*}=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Note that this agrees with the above enumeration, since $26(1 / 2)(12 / 13)=12$.

[^0]: This is some of the material covered January 29, in Math 195: Cryptography, taught by Hendrik Lenstra, prepared by John Voight jvoight@math. berkeley.edu.

