MATH 052: FUNDAMENTALS OF MATHEMATICS WORKSHEET, DAY #24

Problem 1. Prove that for every positive integer n, we have $\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{(n+1)(n+2)} = \frac{n}{2n+4}.$ *Proof.* We use induction. First, the ______. Since the formula holds for n = 1. Now we prove the ______. Assume that

holds for $k \in \mathbb{Z}_{>0}$; we show that

We have

$$\frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+2)(k+3)} = \frac{1}{(k+2)(k+3)} =$$

$$=\frac{k+1}{2k+6}.$$

By the principle of mathematical induction, the result holds for all n > 0.

Date: 22 October 2012.

Problem 2. Prove that for all $n \ge 1$, we have $2^n > n$.

Proof. We proceed by induction. The base case is $n = _$, and the result holds in this case since

Now the induction step: assume that

and we show that

Indeed, we have

 $2^{k+1} = 2 \cdot 2^k > \qquad \ge k+1.$

By the principle of mathematical induction, the result holds for all $n \ge 1$.

Problem 3(a). Show that $2x^2 \ge (x+1)^2$ for all real numbers $x \ge 3$. *Proof.* We use a direct proof. The inequality

$$2x^2 \ge (x+1)^2 =$$

is equivalent to the inequality

$$x^2 \ge$$

Factoring the left-hand side, we have

Now our hypothesis $x \ge 3$ means that $x - 1 \ge 2$ so

Problem 3(b). Show by induction that for all $n \ge 5$ we have $2^n > n^2$. [Use 3(a)!] *Proof.*

Problem 4. Show by induction that for all $n \ge 0$ we have $3 \mid (4^n - 1)$.

Proof.