MATH 052: FUNDAMENTALS OF MATHEMATICS WORKSHEET, DAY \#24

Problem 1. Prove that for every positive integer n, we have

$$
\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(n+1)(n+2)}=\frac{n}{2 n+4}
$$

Proof. We use induction. First, the \qquad . Since
the formula holds for $n=1$.
Now we prove the \qquad . Assume that
holds for $k \in \mathbb{Z}_{>0}$; we show that

We have

$$
\begin{gathered}
\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(k+1)(k+2)}+\frac{1}{(k+2)(k+3)}= \\
+\frac{1}{(k+2)(k+3)}=
\end{gathered}
$$

$$
=\frac{k+1}{2 k+6} .
$$

By the principle of mathematical induction, the result holds for all $n>0$.

Problem 2. Prove that for all $n \geq 1$, we have $2^{n}>n$.
Proof. We proceed by induction. The base case is $n=$ \qquad , and the result holds in this case since

Now the induction step: assume that
and we show that

Indeed, we have

$$
2^{k+1}=2 \cdot 2^{k}>\quad \geq k+1
$$

By the principle of mathematical induction, the result holds for all $n \geq 1$.

Problem 3(a). Show that $2 x^{2} \geq(x+1)^{2}$ for all real numbers $x \geq 3$.
Proof. We use a direct proof. The inequality

$$
2 x^{2} \geq(x+1)^{2}=
$$

is equivalent to the inequality

$$
x^{2} \geq
$$

Factoring the left-hand side, we have

Now our hypothesis $x \geq 3$ means that $x-1 \geq 2$ so

Problem 3(b). Show by induction that for all $n \geq 5$ we have $2^{n}>n^{2}$. [Use 3(a)!] Proof.

Problem 4. Show by induction that for all $n \geq 0$ we have

$$
3 \mid\left(4^{n}-1\right) .
$$

Proof.

