MATH 052: FUNDAMENTALS OF MATHEMATICS FINAL EXAM

Name

Problem	Score	Problem	Score
1		6	
2		7	
3		8	
4		9	
5		10	

Total \qquad

Problem 1.

(a) List all elements of the set $\left\{k \in \mathbb{Z}: k\right.$ is prime and $\left.1<k^{3} \leq 200\right\}$.
(b) Label as true or false:

$$
\emptyset \subseteq\{s, t\} \text { and } \emptyset \in\{\{\emptyset\}\} .
$$

(c) Let $A=\{x \in \mathbb{Z}: 5 \mid x\}$ and let $B=\{x \in \mathbb{Z}: 3 \mid x\}$. Find $(\bar{A} \cup B) \cap[2,16]$, where \bar{A} denotes the complement of A in \mathbb{Z}.
(d) Let $A=\{1\}$ and $C=\{1,2\}$. Give an example of a set B such that $\mathcal{P}(A) \subsetneq B \subsetneq \mathcal{P}(C)$,
where \mathcal{P} denotes the power set.

Problem 2. Use a truth table to show that

$$
((P \wedge Q) \Rightarrow R) \equiv((P \wedge(\sim R)) \Rightarrow(\sim Q))
$$

Problem 3. Consider the function

$$
\begin{aligned}
f: \mathbb{R} \backslash\{1\} & \rightarrow \mathbb{R} \backslash\{0\} \\
x & \mapsto f(x)=\frac{2}{x-1}
\end{aligned}
$$

Show that f is a bijection and find the inverse of f.

Problem 4.

(a) Compute $d=\operatorname{gcd}(172,39)$ using the Euclidean algorithm.
(b) Compute $x, y \in \mathbb{Z}$ such that $172 x+39 y=d$.

Problem 5. Let A, B be sets. Prove (rigorously) de Morgan's law:
$\overline{A \cup B}=\bar{A} \cap \bar{B}$.

Problem 6. Prove by induction that for all integers $n \geq 1$

$$
\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

Problem 7. Let $a, b \in \mathbb{Z}$. Prove the statement
If $a b$ is odd, then $a^{2}+b^{2}$ is even
in two steps.
(a) First, prove that if $a b$ is odd then a, b are both odd.
(b) Use (a) to complete the proof.

Problem 8.

(a) Prove that $\sqrt{2}+1$ is irrational. (You may use the fact that $\sqrt{2}$ is irrational.)
(b) Express the following statement in symbols and show that it is a true statement: There exists an integer n such that $x^{2}+y^{2} \geq n$ for every two real numbers x and y.
(c) Compute $[-3] \cdot[13]=[r]$ in $\mathbb{Z} / 11 \mathbb{Z}$ with $0 \leq r<11$.

Problem 9.

(a) How many partitions of $\{-6,0,13\}$ are there?
(b) Let R be an equivalence relation on $A=\{a, b, c, d, e, f, g\}$ such that $a R c, c R d, d R g$, and $b R f$.
Suppose there are three distinct equivalence classes for R. Determine these equivalence classes.
(c) A relation R is defined on \mathbb{Z} by $a R b$ if $3 \mid\left(a^{3}-b\right)$. Is R reflexive? If so, give a proof; if not, give a disproof.

Problem 10. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Show that if f and g are bijective, then $g \circ f$ is bijective.

