MATH 052: FUNDAMENTALS OF MATHEMATICS FINAL EXAM SOLUTIONS

Problem 1. For (a), we have $\{2,3,5\}$, since $7^{3}>200$. Statement (b) is false, since $\emptyset \notin\{\{\emptyset\}\}$. For (c), we have $\left(A^{c} \cup B\right) \cap[2,16]=\{x \in \mathbb{Z}: 5 \nmid x$ or $3 \mid x$ and $2 \leq x \leq 16\}=\{2,3,4,6,7,8,9,11,12,13,14,15,16\}$. For (d), we $\mathcal{P}(A)=\{\emptyset,\{1\}\}$ and $\mathcal{P}(C)=\{\emptyset,\{1\},\{2\},\{1,2\}\}$, so we could take $B=\{\emptyset,\{1\},\{2\}\}$ or $B=\{\emptyset,\{1\},\{1,2\}\}$.
Problem 2. For the truth table, we have:

P	Q	R	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	$P \wedge(\sim R)$	$(P \wedge(\sim R)) \Rightarrow(\sim Q)$
F	F	F	F	T	F	T
F	F	T	F	T	F	T
F	T	F	F	T	F	T
F	T	T	F	T	F	T
T	F	F	F	T	T	T
T	F	T	F	T	F	T
T	T	F	T	F	T	F
T	T	T	T	T	F	T

Since the fifth and seventh columns have the same truth values, they are logically equivalent.
Problem 3. First we show injectivity: if $x_{1}, x_{2} \in \mathbb{R} \backslash\{1\}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $2 /\left(x_{1}-1\right)=2 /\left(x_{2}-1\right)$ so cross-multiplying we get $2\left(x_{1}-1\right)=2\left(x_{2}-1\right)$ and simplifying gives $x_{1}=x_{2}$, so f is injective. To show surjectivity, we take $y=f(x)=2 /(x-1)$ and solve for x to obtain $x=1+2 / y$: then given $y \in \mathbb{R} \backslash\{0\}$ we let $x=1+2 / y \in \mathbb{R} \backslash\{1\}$ and indeed

$$
f(1+2 / y)=\frac{2}{(1+2 / y)-1}=\frac{2}{2 / y}=y
$$

So f is surjective. This also shows that $f^{-1}(y)=1+2 / y$.
Problem 4. For (a), we have

$$
\begin{aligned}
172 & =4 \cdot 39+16 \\
39 & =2 \cdot 16+7 \\
16 & =2 \cdot 7+2 \\
7 & =3 \cdot 2+1
\end{aligned}
$$

Thus $\operatorname{gcd}(315,271)=1$.
For (b), we have

$$
1=7+(-3) \cdot 2=(-3) \cdot 16+7 \cdot 7=7 \cdot 39+(-17)(16)=(-17)(172)+(75)(39)
$$

So $x=-17$ and $y=75$.
Problem 5. First we show (\subseteq). Let $x \in \overline{A \cup B}$. Then $x \notin A \cup B$, so ("it is not the case that $x \in A$ or $x \in B$ ") by de Morgan's law in logic, $x \notin A$ and $x \notin B$. Thus $x \in \bar{A}$ and $x \in \bar{B}$ so $x \in \bar{A} \cap \bar{B}$.

Now we show (?). Let $x \in \bar{A} \cap \bar{B}$. Then $x \in \bar{A}$ and $x \in \bar{B}$ and $x \notin A$ and $x \notin B$. By de Morgan's law, we have $x \notin A \cup B$, so $x \in \overline{A \cup B}$.

Thus $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
Problem 6. We proceed by induction. The base case $n=1$ is the equality $1 / 2=1 /(1+1)$, which is true.

Now suppose that the statement is true for $n=k$:

$$
\frac{1}{2}+\cdots+\frac{1}{k(k+1)}=\frac{k}{k+1} .
$$

We want to show the statement is true for $n=k+1$:

$$
\frac{1}{2}+\cdots+\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2}
$$

By the inductive hypothesis,

$$
\begin{aligned}
\frac{1}{2}+\cdots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)} & =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2}
\end{aligned}
$$

By the principle of mathematical induction, the statement is true for all n.
Problem 7. First, (a): if $a b$ is odd, then a and b are both odd. To prove this, we prove the contrapositive: if a is even or b is even, then $a b$ is even. Indeed, if a is even or b is even, then without loss of generality, $a=2 x$ is even, and then $a b=(2 x) b=2(b x)$ is even by definition, since $b x \in \mathbb{Z}$.

Now we use the claim to prove the result (b). Suppose that $a b$ is odd; then by the claim, a and b are both odd. Thus $a=2 s+1$ and $b=2 t+1$. Thus

$$
a^{2}+b^{2}=(2 s+1)^{2}+(2 t+1)^{2}=2\left(2 s^{2}+2 s+2 t^{2}+2 t+1\right)
$$

is even.
Problem 8. For (a), we proceed by contradiction. Suppose that $\sqrt{2}+1=x \in \mathbb{Q}$ is rational. Then $x-1$ is also rational, since \mathbb{Q} is closed under subtraction. But $x-1=\sqrt{2}$ is irrational, and this is a contradiction. Thus $\sqrt{2}+1$ is irrational.

For (b), the statement is

$$
\exists n \in \mathbb{Z}: \forall x, y \in \mathbb{R}: x^{2}+y^{2} \geq n
$$

The statement is true by taking $n=0$, since $x^{2}+y^{2} \geq 0$ for all $x, y \in \mathbb{R}$.
For (c), we have $(-3) \cdot 13=-39 \equiv 5(\bmod 11)$, so $[-3] \cdot[13]=[5]$ in $\mathbb{Z} / 11 \mathbb{Z}$.
Problem 9. For (a), the partitions are $\{\{-6,0,13\}\},\{\{-6\},\{0,13\}\},\{\{0\},\{-6,13\}\},\{\{13\},\{-6,0\}\}$, $\{\{-6\},\{0\},\{13\}\}$: there are 5 partitions.

For (b), we see that the equivalence class of a must contain c and thus by transitivity it must contain d, and same with g, so $\{a, c, d, g\} \subseteq[a]$. Similarly, $\{b, f\} \subseteq[b]$. We need only to decide where e belongs; but since there are three equivalence classes, it must be alone in its equivalence class, since the equivalence classes form a partition of A. Thus the equivalence classes are

$$
[a]=\{a, c, d, g\} \text { and }[b]=\{b, f\} \text { and }[e]=\{e\}
$$

For (c), we see that R is reflexive if and only if $3 \mid\left(a^{3}-a\right)$ for all $a \in \mathbb{Z}$. This is true! Here is a proof. By the division algorithm, we have $a \equiv 0,1,2(\bmod 3)$. If $a \equiv 0(\bmod 3)$ then $a^{3} \equiv 0^{3}=0 \equiv a(\bmod 3)$; if $a \equiv 1(\bmod 3)$ then $a^{3} \equiv 1^{3}=1 \equiv a(\bmod 3)$; and if $a \equiv 2(\bmod 3)$ then $a^{3} \equiv 2^{3}=8 \equiv 2(\bmod 3)$. In all three cases, we have $a^{3} \equiv a(\bmod 3)$, as claimed.

Problem 10. We show that $g \circ f$ is injective and surjective.
Let $x_{1}, x_{2} \in A$ and suppose that $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. Then $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Since g is injective, this implies that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Since f is injective, this implies $x_{1}=x_{2}$. Thus $g \circ f$ is injective.

Now let $z \in C$. Since g is surjective, there exists $y \in B$ such that $g(y)=z$. Since f is surjective, there exists $x \in A$ such that $f(x)=y$. Thus $(g \circ f)(x)=g(f(x))=g(y)=z$, so $g \circ f$ is surjective.

