MATH 052: FUNDAMENTALS OF MATHEMATICS EXAM \#2

Problem 1. For (a), the two distributive laws are:

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

For (b), a counterexample is $n=3$: we have $3^{2}=9 \equiv 1(\bmod 4)$, since $4 \mid(9-1)=8$, but $3 \not \equiv 1(\bmod 4)$, since $4 \nmid(3-1)=2$. For (c), the statement that is proved is:

If $a \equiv 2(\bmod 4)$ and $b \equiv 1(\bmod 4)$, then $4 \nmid\left(a^{2}+2 b\right)$.
Problem 2. For (a), the statement is true: we can take $a=2$ and $b=-1$ and get $a b=-2<0$ and $a+b=2-1=1>0$. For (b), we write the statement as

$$
\exists a, b \in \mathbb{Z},(a b<0) \wedge(a+b>0)
$$

For (c), the negation is

$$
\forall a, b \in \mathbb{Z},(a b \geq 0) \vee(a+b \leq 0)
$$

For (d), this reads
For all integers a and b, we have either $a b \geq 0$ or $a+b \leq 0$.
Problem 3. Let $a, b \in \mathbb{Z}$. We prove the contrapositive: if a is even and b is even then $a x+b y$ is even. Since a is even and b is even, we have $a=2 m$ and $b=2 n$ for $m, n \in \mathbb{Z}$. Thus $a x+b y=(2 m) x+(2 n) y=2(m x+n y)$, so $a x+b y$ is even.

Problem 4. Since $a \mid b$, by definition there exists $x \in \mathbb{Z}$ such that $b=x a$. Similarly, since $b \mid c$, there exists $y \in \mathbb{Z}$ such that $c=y b$. Therefore $c=y b=y(x a)=(x y) a$, and since $x y \in \mathbb{Z}$, we have by definition that $a \mid c$.

Problem 5. First, we prove the base case $(n=1)$: we verify indeed that

$$
1=\frac{1-r}{1-r}=1
$$

Now, the induction step. Assume that

$$
1+r+r^{2}+\cdots+r^{k-1}=\frac{1-r^{k}}{1-r}
$$

We want to show that

$$
1+r+r^{2}+\cdots+r^{k-1}+r^{k}=\frac{1-r^{k+1}}{1-r}
$$

Well, by the induction hypothesis, we have

$$
1+r+r^{2}+\cdots+r^{k-1}+r^{k}=\frac{1-r^{k}}{1-r}+r^{k}=\frac{1-r^{k}}{1-r}+\frac{r^{k}(1-r)}{1-r}=\frac{1-r^{k}+r^{k}-r^{k+1}}{1-r}=\frac{1-r^{k+1}}{1-r}
$$

Therefore, by the principle of mathematical induction, the result holds for all $n \geq 1$.

