MATH 052: FUNDAMENTALS OF MATHEMATICS EXAM \#1

Name

Problem	Score
1	
2	
3	
4	
5	

Total \qquad

Problem 1.

(a) Consider the statement:

If $2+2=3$, then the moon is made of cheese.
Is this statement true or false? Briefly explain.
(b) How many elements are in the set $S=\{1,2,1,\{1,2\}, \emptyset\}$?
(c) What is the negation of the statement "If you earn a passing grade on the midterm exam, then you will get your allowance"?
(d) Draw a Venn diagram for two sets A, B and shade the set $(A \cup B) \backslash(A \cap B)$.

Problem 2.

(a) Describe the set $A=\{-2,-1,1,2,3\}$ in the form $\{x \in \mathbb{Z}: P(x)\}$ where $P(x)$ is a proposition depending on the variable x.
(b) Let $A=\{1,3,12,35\}, B=\{3,7,12,20\}$ and $C=\{x: x$ is a prime number $\}$. List the elements of the following sets. Which of the sets D, E, and F are equal?

$$
\begin{aligned}
& D=A \cap B \\
& E=(A \cup B) \backslash C \\
& F=A \cup(B \backslash C)
\end{aligned}
$$

(c) Give examples of three sets A, B, C such that $B \in A, B \subseteq C$, and $A \cap C \neq \emptyset$.

Problem 3. Let $S=\{1,2,3\}$. Consider the following open sentences over the domain S :

$$
\begin{aligned}
& P(n): \frac{(n+4)(n+5)}{2} \text { is odd. } \\
& Q(n): 2^{n-1}>3
\end{aligned}
$$

(a) State $P(1)$ in words.
(b) For which $n \in S$ is

$$
P(n) \Leftrightarrow Q(n)
$$

true?
(c) Simplify $\sim(P(n) \vee Q(n))$ using de Morgan's laws and state the result in words.

Problem 4.

(a) Show that $(P \Rightarrow R) \vee(\sim Q \Rightarrow R)$ and $(P \vee(\sim Q)) \Rightarrow R$ are not logically equivalent.
(b) What is a tautology?

Problem 5.

(a) Determine the power set $\mathcal{P}(A)$ of the set $A=\{0,2,-6\}$.
(b) Consider the following subsets of $A=\{1,2,3,4,5,6\}$:

$$
\begin{array}{ll}
S_{1}=\{\{1,3,6\},\{2,4\},\{5\}\} & S_{2}=\{\{1,2,3\},\{4\}, \emptyset,\{5,6\}\} \\
S_{3}=\{\{1,2\},\{3,4,5\},\{5,6\}\} & S_{4}=\{\{1,4\},\{3,5\},\{2\}\}
\end{array}
$$

Determine which of these sets are partitions of A.
(c) True or false: a partition of a set A is a subset $\mathcal{S} \subseteq \mathcal{P}(A)$ such that:
(a) $X \neq \emptyset$ for all $X \in \mathcal{S}$;
(b) For all $X, Y \in \mathcal{S}$ either $X=Y$ or $X \cap Y=\emptyset$; and
(c) $\bigcup_{X \in \mathcal{S}} X=A$.
(d) For $A=\{-1,0,1\}$ and $B=\{u, v\}$, determine $A \times B$.
(e) Let $S=\{1,2,3\}$. Evaluate $\bigcup_{x \in S}[x, 2 x]$.

