MATH 052: FUNDAMENTALS OF MATHEMATICS EXAM #1

Problem 1. For (a), the implication is true, because the hypothesis is false. For (b), there are 4 elements– no repetitions in sets are allowed. For (c), the negation of an implication $P \Rightarrow Q$, which is defined to be $\sim (P \land (\sim Q))$, is $P \land (\sim Q)$. So the negation is: "You earned a passing grade on the midterm exam and did not get your allowance." For (d), we have:

Problem 2. For (a), for example, $A = \{x \in \mathbb{Z} : -2 \le x \le 3 \text{ and } x \ne 0\}$. For (b), $D = \{3, 12\}$, $E = \{1, 12, 20, 35\}$, and $F = \{1, 3, 12, 20, 35\}$; 1 is not a prime number. Since 12 is an element of each of D, E, F, no pair of these sets is disjoint. For (c), for example, $A = C = \{\emptyset\}$ and $B = \emptyset$.

Problem 3. For (a), P(1) is the statement "15 is odd". For (b), since 5(6)/2 = 15 and 6(7)/2 = 21 are odd but 7(8)/2 = 28 is even, we see that P(n) is T for n = 1, 2 and F for n = 3. Since $2^0 = 1 < 3$ and $2^1 = 2 < 3$ but $2^2 > 3$, we see that Q(n) is F for n = 1, 2 and T for n = 3. So there is no value $n \in S$ such that $P(n) \Leftrightarrow Q(n)$. For (c), we have $\sim (P(n) \lor Q(n)) \cong (\sim P(n)) \land (\sim Q(n))$ by de Morgan's laws, and this reads: "(n + 4)(n + 5)/2 is even and $2^{n-1} \leq 3$ ".

P	Q	R	$P \Rightarrow$	$(\sim Q) \Rightarrow R$	$(P \Rightarrow R) \lor ((\sim Q) \Rightarrow R \mid$	$P \lor (\sim Q)$	$(P \lor (\sim Q)) \Rightarrow R$
F	\mathbf{F}	F	Т	F	Т	Т	F
\mathbf{F}	\mathbf{F}	Т	Т	Т	Т	Т	Т
\mathbf{F}	Т	F	Т	Т	Т	F	Т
\mathbf{F}	Т	Т	Т	Т	Т	F	Т
Т	\mathbf{F}	F	F	\mathbf{F}	F	Т	\mathbf{F}
Т	\mathbf{F}	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	\mathbf{F}
Т	Т	Т	Т	Т	Т	Т	Т
					1	1	

Problem 4. For (a), fun with truth tables!

Since columns 6 and 8 do not have the same truth table, the sentential forms are not logically equivalent. For (b), a tautology is a sentential form which is true no matter what the values of the propositions. For example, $P \lor (\sim P)$ is a tautology.

Problem 5. For (a), $\mathcal{P}(A) = \{\emptyset, \{0\}, \{2\}, \{-6\}, \{0, 2\}, \{0, -6\}, \{2, -6\}, \{0, 2, -6\}\}$. For (b), S_1 is a partition and is the only one. S_2 has $\emptyset \in S_2$, S_3 has 5 repeated, and S_4 is missing 6. For (c), True: this is the definition of a partition. For (d), $A \times B = \{(-1, u), (-1, v), (0, u), (0, v), (1, u), (1, v)\}$. For (e), we have $\bigcup_{x \in \{1,2,3\}} [x, 2x] = [1, 2] \cup [2, 4] \cup [3, 6] = [1, 6]$.

Date: 24 September 2012.