MATH 052: FUNDAMENTALS OF MATHEMATICS EXAM \#1

Problem 1. For (a), the implication is true, because the hypothesis is false. For (b), there are 4 elementsno repetitions in sets are allowed. For (c), the negation of an implication $P \Rightarrow Q$, which is defined to be $\sim(P \wedge(\sim Q))$, is $P \wedge(\sim Q)$. So the negation is: "You earned a passing grade on the midterm exam and did not get your allowance." For (d), we have:

Problem 2. For (a), for example, $A=\{x \in \mathbb{Z}:-2 \leq x \leq 3$ and $x \neq 0\}$. For (b), $D=\{3,12\}$, $E=\{1,12,20,35\}$, and $F=\{1,3,12,20,35\} ; 1$ is not a prime number. Since 12 is an element of each of D, E, F, no pair of these sets is disjoint. For (c), for example, $A=C=\{\emptyset\}$ and $B=\emptyset$.

Problem 3. For (a), $P(1)$ is the statement " 15 is odd". For (b), since $5(6) / 2=15$ and $6(7) / 2=21$ are odd but $7(8) / 2=28$ is even, we see that $P(n)$ is T for $n=1,2$ and F for $n=3$. Since $2^{0}=1<3$ and $2^{1}=2<3$ but $2^{2}>3$, we see that $Q(n)$ is F for $n=1,2$ and T for $n=3$. So there is no value $n \in S$ such that $P(n) \Leftrightarrow Q(n)$. For (c), we have $\sim(P(n) \vee Q(n)) \cong(\sim P(n)) \wedge(\sim Q(n))$ by de Morgan's laws, and this reads: " $(n+4)(n+5) / 2$ is even and $2^{n-1} \leq 3$ ".

Problem 4. For (a), fun with truth tables!

P	Q	R	$P \Rightarrow$	$(\sim Q) \Rightarrow R$	$(P \Rightarrow R) \vee((\sim Q) \Rightarrow R$	$P \vee(\sim Q)$	$(P \vee(\sim Q)) \Rightarrow R$
F	F	F	T	F	T	T	T
F	F	T	T	T	T	F	
F	T	F	T	T	T	F	T
F	T	T	T	T	F	F	T
T	F	F	F	F	T	T	F
T	F	T	T	T	T	T	T
T	T	F	F	T	T	T	F
T	T	T	T	T	T	T	

Since columns 6 and 8 do not have the same truth table, the sentential forms are not logically equivalent.
For (b), a tautology is a sentential form which is true no matter what the values of the propositions. For example, $P \vee(\sim P)$ is a tautology.

Problem 5. For $(\mathrm{a}), \mathcal{P}(A)=\{\emptyset,\{0\},\{2\},\{-6\},\{0,2\},\{0,-6\},\{2,-6\},\{0,2,-6\}\}$. For (b), S_{1} is a partition and is the only one. S_{2} has $\emptyset \in S_{2}, S_{3}$ has 5 repeated, and S_{4} is missing 6 . For (c), True: this is the definition of a partition. For (d), $A \times B=\{(-1, u),(-1, v),(0, u),(0, v),(1, u),(1, v)\}$. For (e), we have $\bigcup_{x \in\{1,2,3\}}[x, 2 x]=[1,2] \cup[2,4] \cup[3,6]=[1,6]$.

