MATH/CS 295: CRYPTOGRAPHY HOMEWORK \#10 ADDITIONAL PROBLEMS

Problem 3.C. For $s \in[0,1]$ define $L_{s}: \mathbb{R}_{>e} \rightarrow \mathbb{R}($ where $e=\exp (1))$ by

$$
L_{s}(x)=\exp \left((\log x)^{s}(\log \log x)^{1-s}\right) .
$$

(a) Show that $L_{0}(x)=\log x$ and $L_{1}(x)=x$.
(b) Show that

$$
L_{s}(x) \leq L_{t}(x)
$$

for all $x \in \mathbb{R}_{>e^{e}}$ whenever $s \leq t$.
(c) Show that the function

$$
L_{1 / 2}(x)=\exp (\sqrt{\log x \log \log x})
$$

is subexponential: i.e., show that for every $\epsilon>0$, we have

$$
L_{1 / 2}(x)=O\left(x^{\epsilon}\right) .
$$

[Hint: Take the logarithm of both sides of the inequality $L_{1 / 2}(x) \leq x^{\epsilon}$ and use l'Hôpital's rule.]

