MATH/CS 295: CRYPTOGRAPHY HOMEWORK \#3 ADDITIONAL PROBLEMS

Problem 1.A. The digits in base 16 are written with $10=A, 11=B, \ldots, 15=F$; e.g. $(9 B)_{16}=9 \cdot 16+11=155$. Write 12538 in binary and hexadecimal.

Problem 1.B. Let $a, b \in \mathbb{Z}_{>0}$ with $a>b$.
(a) Show that $a-b$ can be computed in time $O(\log a)$.
(b) Suppose that the Euclidean algorithm is performed on $r_{0}=a, r_{1}=b$ with successive quotients q_{i} defined by $r_{i-1}=q_{i} r_{i}+r_{i+1}$. Show (by induction) that $a \geq q_{1} \cdots q_{t}$, so that $\log a \geq \sum_{i} \log q_{i}$. Conclude that the Euclidean algorithm runs in time $O((\log a)(\log b))$.

Problem 1.C. The ring $\mathbb{Z}[i]=\{x+y i: x, y \in \mathbb{Z}\}$ is Euclidean under the norm $N(x+y i)=$ $x^{2}+y^{2}$. Let $a, b \in \mathbb{Z}[i]$ be not both zero, and suppose $N(a)>N(b)$. Show that the number of divisions performed in the Euclidean algorithm for $\mathbb{Z}[i]$ is $O(\log N(b))$.

