MATH 052: INTRODUCTION TO PROOFS REVIEW, EXAM \#2

Problem 1. Let $x \geq-1$. Prove by induction that

$$
(1+x)^{n} \geq 1+n x
$$

for all integers $n \geq 1$.
Problem 2. Give an example of a partition of \mathbb{Z} into four subsets.
Problem 3. Consider the relation R defined on \mathbb{Z} by $a R b$ if and only if $|a-b| \leq 2$. Which of the properties reflexive, symmetric, and transitive does the relation R possess? Justify your answers.
Problem 4. Let $A=\mathbb{R}_{>1}=\{x \in \mathbb{R}: x>1\}$ and let $B=\mathbb{R}_{>0}$. Show that the map

$$
\begin{aligned}
f: A & \rightarrow B \\
x & \mapsto \frac{5}{x^{2}-1}
\end{aligned}
$$

is a bijection.
Problem 5. Let A, B, C, D be nonempty sets. Suppose that $A \times B \subseteq C \times D$. Show that $A \subseteq C$ and $B \subseteq D$.

