MATH 052: INTRODUCTION TO PROOFS REVIEW, FINAL EXAM

Problem 1. Let $A \subseteq S$. Prove that

$$
S \backslash(S \backslash A)=A
$$

Problem 2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $c \in \mathbb{R}$ if the following condition holds:
For every $\epsilon>0$, there exists $\delta>0$ such that $|f(x)-f(c)|<\epsilon$ whenever $|x-c|<\delta$.
(a) Write the condition in abbreviated form, using quantifiers.
(b) Write the negation of this condition in a quantified form, using no negation symbols.
(c) Write out part (b) mostly in words.

Problem 3. Prove by induction that $n!<n^{n}$ for all integers $n>1$.
Problem 4. Show that $\# \mathbb{Z} \leq \#[0,1]$.
Problem 5. Consider the binary operation $a * b=\frac{a b}{3}$ on $\mathbb{Q} \backslash\{0\}$. Show that $*$ is associative and commutative. What is the identity element for $*$?
Problem 6. Prove that if $a \mid b$ then $a^{2} \mid b^{2}$.
Problem 7. Let \sim be an equivalence relation on a set S, and let $a, b \in S$. Show that two equivalence classes under \sim are either equal or disjoint, i.e. either $[a]=[b]$ or $[a] \cap[b]=\emptyset$.

See also:

> http://www.emba.uvm.edu/~sands/m52f11/index.html.

