MATH 052: INTRODUCTION TO PROOFS REVIEW, FINAL EXAM

Problem 1. Let $A \subseteq S$. Prove that

$$
S \backslash(S \backslash A)=A
$$

Solution. First, we prove \subseteq. Let $x \in S \backslash(S \backslash A)$. Then, by definition of complement, $x \in S$ and $x \notin(S \backslash A)$. We have $x \notin(S \backslash A)$ if $x \in(S \backslash A)$ is false, which means $(x \in S$ and $x \notin A)$ is false; thus $(x \notin S$ or $x \in A)$ is true. Since $x \in S$, we must have the latter, and $x \in A$.

Second, we prove \supseteq. Let $x \in A$. Then $x \notin S \backslash A$ by definition of complement. Also, $x \in S$ since $A \subseteq S$. Thus, by definition of complement, $x \in S \backslash(S \backslash A)$.
Problem 2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $c \in \mathbb{R}$ if the following condition holds:
For every $\epsilon>0$, there exists $\delta>0$ such that $|f(x)-f(c)|<\epsilon$ whenever $|x-c|<\delta$.
(a) Write the condition in abbreviated form, using quantifiers.
(b) Write the negation of this condition in a quantified form, using no negation symbols.
(c) Write out part (b) mostly in words.

Solution. For part (a), we have:

$$
(\forall \epsilon>0)(\exists \delta>0)(\forall x)(|x-c|<\delta \Rightarrow|f(x)-f(c)|<\epsilon)
$$

For part (b), we have

$$
(\exists \epsilon>0)(\forall \delta>0)(\exists x)(|x-c|<\delta \wedge|f(x)-f(c)| \geq \epsilon)
$$

In negating a nested statement like this, swap \exists and \forall; and the negation of an implication $P \Rightarrow Q$ is the conjunction $P \wedge \sim Q$. For part (c), "A function f is not continuous at $c \in \mathbb{R}$ if there exists $\epsilon>0$ such that for all $\delta>0$ there exists $x \in \mathbb{R}$ such that $|x-c|<\delta$ and $|f(x)-f(c)| \geq \epsilon$."
Problem 3. Prove by induction that $n!<n^{n}$ for all integers $n>1$.
Solution. The base case $n=2$ is true: indeed, $2!=2<4=2^{2}$.
Next, we prove the inductive step. Suppose that $n!<n^{n}$; we show $(n+1)!<(n+1)^{n+1}$. We have

$$
(n+1)!=(n+1) n!<(n+1) n^{n}<(n+1)(n+1)^{n}=(n+1)^{n+1}
$$

Thus, by the principle of mathematical induction, we have $n!<n^{n}$ for all $n>1$.
Problem 4. Show that $\# \mathbb{Z} \leq \#[0,1]$.
Solution. By definition, we need to show that there exists an injective map $f: \mathbb{Z} \rightarrow[0,1]$.
The map

$$
\begin{aligned}
f: \mathrm{N} & \rightarrow[0,1] \\
n & \mapsto 1 / n
\end{aligned}
$$

is an injective map: if $f(n)=1 / n=1 / m=f(m)$ then $m=n$. In class, we showed that $\# \mathbb{Z}=\# \mathrm{~N}$; indeed, the map

$$
\begin{aligned}
g: \mathbb{Z} & \rightarrow \mathrm{N} \\
\quad n & \mapsto \begin{cases}1 & \text { if } n=0 \\
2 n & \text { if } n>0 \\
2|n|+1 & \text { if } n<0\end{cases}
\end{aligned}
$$

is such a bijection.

Therefore $f \circ g: \mathrm{N} \rightarrow[0,1]$ is an injective map, since the composition of two injective maps is injective. Thus $\# \mathbb{Z} \leq \#[0,1]$.
Problem 5. Consider the binary operation $a * b=\frac{a b}{3}$ on $\mathbb{Q} \backslash\{0\}$. Show that $*$ is associative and commutative. What is the identity element for $*$?

Solution. * is associative since

$$
\begin{aligned}
& (a * b) * c=(a b / 3) * c=(a b / 3) c / 3=a b c / 9 \\
& a *(b * c)=a *(b c / 3)=a(b c / 3) / 3=a b c / 9
\end{aligned}
$$

are equal for all $a, b, c \in \mathbb{Q} \backslash\{0\} . *$ is commutative since $a * b=a b / 3=b a / 3=b * a$ for all $a, b \in \mathbb{Q} \backslash\{0\}$.
The identity element $e \in \mathbb{Q} \backslash\{0\}$ is the unique element satisfying $a * e=e * a=a$ for all $a \in \mathbb{Q} \backslash\{0\}$. Well,

$$
a * e=e * a=a e / 3=a
$$

for all a if and only if $e=3$, so the identity element is $e=3$.
Problem 6. Prove that if $a \mid b$ then $a^{2} \mid b^{2}$.
Solution. Suppose that $a \mid b$. Then $b=c a$ for some $c \in \mathbb{Z}$. Then $b^{2}=(c a)^{2}=\left(c^{2}\right) a^{2}$, so by definition, $a^{2} \mid b^{2}$.
Problem 7. Let \sim be an equivalence relation on a set S, and let $a, b \in S$. Show that two equivalence classes under \sim are either equal or disjoint, i.e. either $[a]=[b]$ or $[a] \cap[b]=\emptyset$.

Solution. We proved this in class when working with equivalence relations. Find it in your notes!

See also:

```
http://www.emba.uvm.edu/~
```

