MATH 052: INTRODUCTION TO PROOFS REVIEW, FINAL EXAM

Problem 1. Let $A \subseteq S$. Prove that

$$S \setminus (S \setminus A) = A.$$

Solution. First, we prove \subseteq . Let $x \in S \setminus (S \setminus A)$. Then, by definition of complement, $x \in S$ and $x \notin (S \setminus A)$. We have $x \notin (S \setminus A)$ if $x \in (S \setminus A)$ is false, which means $(x \in S \text{ and } x \notin A)$ is false; thus $(x \notin S \text{ or } x \in A)$ is true. Since $x \in S$, we must have the latter, and $x \in A$.

Second, we prove \supseteq . Let $x \in A$. Then $x \notin S \setminus A$ by definition of complement. Also, $x \in S$ since $A \subseteq S$. Thus, by definition of complement, $x \in S \setminus (S \setminus A)$.

Problem 2. A function $f : \mathbb{R} \to \mathbb{R}$ is *continuous* at $c \in \mathbb{R}$ if the following condition holds:

For every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(c)| < \epsilon$ whenever $|x - c| < \delta$.

- (a) Write the condition in abbreviated form, using quantifiers.
- (b) Write the negation of this condition in a quantified form, using no negation symbols.
- (c) Write out part (b) mostly in words.

Solution. For part (a), we have:

$$(\forall \epsilon > 0)(\exists \delta > 0)(\forall x)(|x - c| < \delta \Rightarrow |f(x) - f(c)| < \epsilon).$$

For part (b), we have

$$(\exists \epsilon > 0)(\forall \delta > 0)(\exists x)(|x - c| < \delta \land |f(x) - f(c)| \ge \epsilon).$$

In negating a nested statement like this, swap \exists and \forall ; and the negation of an implication $P \Rightarrow Q$ is the conjunction $P \land \sim Q$. For part (c), "A function f is not continuous at $c \in \mathbb{R}$ if there exists $\epsilon > 0$ such that for all $\delta > 0$ there exists $x \in \mathbb{R}$ such that $|x - c| < \delta$ and $|f(x) - f(c)| \ge \epsilon$."

Problem 3. Prove by induction that $n! < n^n$ for all integers n > 1.

Solution. The base case n = 2 is true: indeed, $2! = 2 < 4 = 2^2$.

Next, we prove the inductive step. Suppose that $n! < n^n$; we show $(n+1)! < (n+1)^{n+1}$. We have

$$(n+1)! = (n+1)n! < (n+1)n^n < (n+1)(n+1)^n = (n+1)^{n+1}$$

Thus, by the principle of mathematical induction, we have $n! < n^n$ for all n > 1.

Problem 4. Show that $\#\mathbb{Z} \leq \#[0,1]$.

Solution. By definition, we need to show that there exists an injective map $f : \mathbb{Z} \to [0, 1]$. The map

$$f: \mathbf{N} \to [0, 1]$$
$$n \mapsto 1/n$$

is an injective map: if f(n) = 1/n = 1/m = f(m) then m = n. In class, we showed that $\#\mathbb{Z} = \# N$; indeed, the map

$$g: \mathbb{Z} \to \mathbb{N}$$

$$n \mapsto \begin{cases} 1 & \text{if } n = 0; \\ 2n & \text{if } n > 0; \\ 2|n|+1 & \text{if } n < 0 \end{cases}$$

is such a bijection.

Date: 7 December 2011; exam 12 December 2011.

Therefore $f \circ g : \mathbb{N} \to [0, 1]$ is an injective map, since the composition of two injective maps is injective. Thus $\#\mathbb{Z} \leq \#[0, 1]$.

Problem 5. Consider the binary operation $a * b = \frac{ab}{3}$ on $\mathbb{Q} \setminus \{0\}$. Show that * is associative and commutative. What is the identity element for *?

Solution. * is associative since

$$(a * b) * c = (ab/3) * c = (ab/3)c/3 = abc/9$$

 $a * (b * c) = a * (bc/3) = a(bc/3)/3 = abc/9$

are equal for all $a, b, c \in \mathbb{Q} \setminus \{0\}$. * is commutative since a * b = ab/3 = b*a for all $a, b \in \mathbb{Q} \setminus \{0\}$.

The identity element $e \in \mathbb{Q} \setminus \{0\}$ is the unique element satisfying a * e = e * a = a for all $a \in \mathbb{Q} \setminus \{0\}$. Well,

$$a * e = e * a = ae/3 = a$$

for all a if and only if e = 3, so the identity element is e = 3.

Problem 6. Prove that if $a \mid b$ then $a^2 \mid b^2$.

Solution. Suppose that $a \mid b$. Then b = ca for some $c \in \mathbb{Z}$. Then $b^2 = (ca)^2 = (c^2)a^2$, so by definition, $a^2 \mid b^2$.

Problem 7. Let \sim be an equivalence relation on a set S, and let $a, b \in S$. Show that two equivalence classes under \sim are either equal or disjoint, i.e. either [a] = [b] or $[a] \cap [b] = \emptyset$.

Solution. We proved this in class when working with equivalence relations. Find it in your notes!

See also:

http://www.emba.uvm.edu/~sands/m52f11/index.html.