MATH 052: INTRODUCTION TO PROOFS HOMEWORK \#38

Problem 6.3.15. Let $a, b, c \in \mathbb{Z}$. Show that if $\operatorname{gcd}(a, c)=1$ and $c \mid a b$ then $c \mid b$.
Solution. Suppose $\operatorname{gcd}(a, c)=1$ and $c \mid a b$. Since $\operatorname{gcd}(a, c)=1$, there exist $x, y \in \mathbb{Z}$ such that $a x+c y=1$. Thus $b=(a b) x+c(b y)$. Since $c \mid a b$, we have $c \mid(a b) x$. Since obviously also $c \mid c(b y)$, we have $c \mid((a b) x+c(b y))=b$, as desired.

