MATH 052: INTRODUCTION TO PROOFS HOMEWORK #38

Problem 6.3.15. Let $a, b, c \in \mathbb{Z}$. Show that if gcd(a, c) = 1 and $c \mid ab$ then $c \mid b$.

Solution. Suppose gcd(a, c) = 1 and $c \mid ab$. Since gcd(a, c) = 1, there exist $x, y \in \mathbb{Z}$ such that ax + cy = 1. Thus b = (ab)x + c(by). Since $c \mid ab$, we have $c \mid (ab)x$. Since obviously also $c \mid c(by)$, we have $c \mid ((ab)x + c(by)) = b$, as desired.

Date: 2 December2011.