MATH 052: INTRODUCTION TO PROOFS HOMEWORK \#37

Problem 6.3.8. Define a prime triple to be a set of three prime numbers of the form $\{n, n+2, n+4\}$. For example, $\{3,5,7\}$ is a prime triple. Are there any others? Either exhibit another or prove there are none.

Solution. We make the following claim.
Claim. If $n \in \mathbb{Z}$ then at least one of $n, n+2, n+4$ is divisible by 3 .
Proof. By the division algorithm, we can write $n=3 q+r$ with $r=0,1,2$. If $r=0$, then $n=3 q$ is divisible by 3 ; if $r=1$, then $n+2=3(q+1)$ is divisible by 3 ; if $r=2$, then $n+4=3(q+2)$ is divisible by 3 .

Now if $\{n, n+2, n+4\}$ is a set of three prime numbers, then by the claim one of them must be divisible by 3 and hence equal to 3 since it is prime. Thus either $n=3$, in which case we have the triple $\{3,5,7\}$; or $n+2=3$, so we obtain the triple $\{1,3,5\}$ but 1 is not prime; or $n+4=3$, but then $n=-1<0$. So the only prime triple is $\{3,5,7\}$.
Problem 6.3.10(a)(b). Use Euclid's algorithm to compute the following greatest common divisors $\operatorname{gcd}(a, b)$ and the extended Euclidean algorithm to write $\operatorname{gcd}(a, b)$ as a linear combination of a, b.
(a) $\operatorname{gcd}(56,104)$
(b) $\operatorname{gcd}(462,3003)$

Solution. For (a), we have:

$$
\begin{aligned}
104 & =1 \cdot 56+48 \\
56 & =1 \cdot 48+8 \\
48 & =6 \cdot 8
\end{aligned}
$$

Therefore $\operatorname{gcd}(104,56)=8$. The extended Euclidean algorithm gives:

$$
8=1 \cdot 56+(-1) \cdot 48=1 \cdot 56+(-1)(104-1 \cdot 56)=(-1)(104)+2(56) .
$$

In a similar way, we obtain $\operatorname{gcd}(462,3003)=231$ with $231=-6(462)+1(3003)$.

