MATH 052: INTRODUCTION TO PROOFS HOMEWORK \#26

Problem 3.3.7. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.
(a) Show that if $g \circ f$ is injective then f is injective.
(b) Show that if $g \circ f$ is surjective then g is surjective.

Solution. First, we prove (a). Suppose that $g \circ f$ is injective; we show that f is injective. To this end, let $x_{1}, x_{2} \in A$ and suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $(g \circ f)\left(x_{1}\right)=g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)=(g \circ f)\left(x_{2}\right)$. But since $g \circ f$ is injective, this implies that $x_{1}=x_{2}$. Therefore f is injective.

Next, we prove (b). Suppose that $g \circ f$ is surjective. Let $z \in C$. Then since $g \circ f$ is surjective, there exists $x \in A$ such that $(g \circ f)(x)=g(f(x))=z$. Therefore if we let $y=f(x) \in B$, then $g(y)=z$. Thus g is surjective.
Problem 3.3.8. In each part of the exercise, give examples of sets A, B, C and functions $f: A \rightarrow B$ and $g: B \rightarrow C$ satisfying the indicated properties.
(a) g is not injective but $g \circ f$ is injective.
(b) f is not surjective but $g \circ f$ is surjective.

Solution. The same example works for both. Let $A=\{1\}, B=\{1,2\}, C=\{1\}$, and $f: A \rightarrow B$ by $f(1)=1$ and $g: B \rightarrow C$ by $g(1)=g(2)=1$. Then $g \circ f: A \rightarrow C$ is defined by $(g \circ f)(1)=1$. This map is a bijection from $A=\{1\}$ to $C=\{1\}$, so is injective and surjective. However, g is not injective, since $g(1)=g(2)=1$, and f is not surjective, since $2 \notin f(A)=\{1\}$.
Problem 3.3.9. Define functions f and g from \mathbb{Z} to \mathbb{Z} such that f is not surjective and yet $g \circ f$ is surjective.
Solution. Let

$$
\begin{aligned}
f: \mathbb{Z} & \rightarrow \mathbb{Z} \\
n & \mapsto 2 n
\end{aligned}
$$

and

$$
\begin{aligned}
& g: \mathbb{Z} \rightarrow \mathbb{Z} \\
& n \mapsto \begin{cases}n / 2, & \text { if } n \text { is even; } \\
0, & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

The map f is not surjective: the image is the set of even integers. However, $g \circ f$ is surjective, since $(g \circ f)(n)=g(f(n))=g(2 n))=(2 n) / 2=n$-so in fact $g \circ f$ is the identity map on \mathbb{Z}.
Solution. Let

$$
\begin{aligned}
f: \mathbb{Z} & \rightarrow \mathbb{Z} \\
x & \mapsto \begin{cases}x+5, & \text { if } x \geq 0 ; \\
x, & \text { if } x<0 .\end{cases}
\end{aligned}
$$

Date: 28 October 2011.
and

$$
\begin{aligned}
g: \mathbb{Z} & \rightarrow \mathbb{Z} \\
x & \mapsto \begin{cases}x-5, & \text { if } x \geq 0 \\
x, & \text { if } x<0 .\end{cases}
\end{aligned}
$$

The map f is not surjective: the elements $1,2,3,4$ are not in the image. However, $g \circ f$ is surjective, since $(g \circ f)(x)=g(f(x))=g(x+5)=x$ if $x \geq 0$ and $(g \circ f)(x)=f(x)=x$ if $x<0$-so in fact $g \circ f$ is the identity map on \mathbb{Z}.

