MATH 052: INTRODUCTION TO PROOFS HOMEWORK \#11

Problem 2.3.1.

(a) $(\exists n \in \mathbb{N})(n+15=22)$.
(b) $(\forall n \in \mathbb{N})\left(n^{3}+15=22\right)$.
(c) $\sim(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})\left(y^{2}=x\right)$.
(d) $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})\left(x \neq y^{2}\right)$.
(e) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})\left(y^{3}=x\right)$.

Problem 2.3.2. Part (a) is the statement "If there exists x such that $x \in A$ and $x \in \mathbb{Z}$, then for all x we have $x \in A$ and $x \in \mathbb{Z}$ ". This implication is false, because the hypothesis is true $(x=1 \in A)$ but the conclusion is false ($3 \notin A$).

Part (b) is the statement "If for all x we have $x \in A$ and $x \in \mathbb{Z}$, then there exists x such that $x \in A$ and $x \in \mathbb{Z}$ ". This implication is true, because the hypothesis is false ($3 \notin A$).
Problem 2.3.3. For part (a), the first implication is now true, because the hypothesis is false (there does not exist an x such that $x \in \emptyset$), and the second implication is still true for the same reason. For part (b), no, there is no such set, because the statement "for all $x \in \mathbb{R}$ we have $x \in A$ and $x \in \mathbb{Z}$ is always false for any set A, so the implication is always true.
Problem 2.3.5. For part (a), we have:

$$
(\forall \epsilon>0)(\exists \delta>0)\left(\forall x^{\prime}\right)\left(\left|x^{\prime}-x\right|<\delta \Rightarrow\left|f\left(x^{\prime}\right)-f(x)\right|<\delta\right) .
$$

For part (b), we have

$$
(\exists \epsilon>0)(\forall \delta>0)\left(\exists x^{\prime}\right)\left(\left|x^{\prime}-x\right|<\delta \wedge\left|f\left(x^{\prime}\right)-f(x)\right| \geq \delta\right) .
$$

In negating a nested statement like this, swap \exists and \forall; and the negation of an implication $P \Rightarrow Q$ is the conjunction $P \wedge \sim Q$. For part (c), "A function f is not continuous at $x \in \mathbb{R}$ if there exists $\epsilon>0$ such that for all $\delta>0$ there exists $x^{\prime} \in \mathbb{R}$ such that $\left|x^{\prime}-x\right|<\delta$ and $\left|f\left(x^{\prime}\right)-f(x)\right| \geq \delta$."
Problem 2.3.6. p is a prime number if and only if

$$
(p \geq 2) \wedge(p=a b \Rightarrow(a=p \vee b=p)) .
$$

The best answer, which is not obvious at this point, is that p is prime if and only if $p \geq 2$ and

$$
(p \mid a b) \Longrightarrow(p|a \wedge p| b)
$$

Problem 2.3.9.

(a) True: Every nonnegative real number has a square root.
(b) False: Every positive real number has two square roots.
(c) True: Every real number has a unique cube root.
(d) True: The unique real number x such that $x y=y$ for all y is $x=1$.
(e) False: The element $x=0$ has the property that all $y \in \mathbb{R}$ satisfy $x y=0$.
(f) True: Take $x=1$, then the only $y \in \mathbb{R}$ which satisfies $x y=0$ is $y=0$.
(g) True: We must have $y=-x$.
(h) True: $(\forall x)(\exists y)(x>y)$ is true, we can always find a real number larger than any given real number.

