MATH 052: INTRODUCTION TO PROOFS FINAL EXAM

Name

Problem	Score	Problem	Score
1		6	
2		7	
3		8	
4		9	
5		10	

Total \qquad

Problem 1.

(a) List all elements of the set $\left\{x \in \mathbb{Z}: x\right.$ is prime and $\left.x^{2} \leq 23\right\}$.
(b) Let $n \in \mathbb{Z}$. What is the contrapositive of the statement "If n is divisible by 10 , then n is divisible by 2 or divisible by 5 "?
(c) What is the power set of $S=\{-\pi, \sqrt{2}\}$?
(d) Label as true or false: $2 \in\{\{1,2\}\}$ or $\emptyset \in\{1,2\}$.
(e) Label as true or false: $\sim((\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x \leq y))$.

Problem 2.

(a) Construct a truth table for the following sentential form:

$$
(\sim Q \Rightarrow P) \wedge(P \vee R)
$$

(b) Is the sentential form in (a) a tautology? Why or why not?

Problem 3. Let A, B, C be sets. Suppose that $A \subseteq B$ and $B \subseteq C$ and $C \subseteq A$.
Prove (rigorously and carefully) that $A=B$.

Problem 4.

(a) Evaluate $\sum_{k=1}^{4} k^{3}$.
(b) Prove by induction that

$$
\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

for all $n \geq 1$.

Problem 5.

(a) Give an example of a set S such that $\# S>\# \mathbb{R}$.
(b) How many partitions of $\{1,2,3,4\}$ are there?
(c) Let $S=\{0,1,2,3\}$. Suppose that \sim is a relation on S with $0 \sim 1$ and $2 \sim 1$. Which of the following must also be true if \sim is to be an equivalence relation on S ? (Your answer could be none, all or anything in between.)
(a) $3 \sim 3$
(b) $1 \sim 0$
(c) $1 \sim 2$
(d) $2 \sim 3$
(d) What is the coefficient of y^{60} in $(y+2)^{63}$?

Problem 6. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Show that if f and g are bijections, then $g \circ f$ is a bijection.

Problem 7. Consider the function

$$
\begin{aligned}
f: \mathbb{R}_{\geq 0} & \rightarrow \mathbb{R}_{\geq 5} \\
x & \mapsto f(x)=9 x^{2}+5
\end{aligned}
$$

(Recall that $\mathbb{R}_{\geq 0}=\{x \in \mathbb{R}: x \geq 0\}$.) Show that f is a bijection.

Problem 8.

(a) Let $S=\mathbb{Q} \backslash\{1\}$. Consider the binary operation $*$ on S given by $a * b=a+b-a b$ for all $a, b \in S$. Show that $*$ is commutative and associative, and determine the identity element for $*$.
(b) Let $S=\mathbb{R}$. Let \sim be the relation on S given by $x \sim y$ if and only if $x-y \in \mathbb{Z}$. Show that \sim is an equivalence relation.

Problem 9.

(a) Compute gcd $(333,160)$ using the Euclidean algorithm.
(b) Compute $x, y \in \mathbb{Z}$ such that $333 x+160 y=d$ where $d=\operatorname{gcd}(333,160)$.

Problem 10.

(a) Let $a, b, c \in \mathbb{Z}$. Suppose that $a \mid b c$ and $\operatorname{gcd}(a, c)=1$. Prove that $a \mid b$.
(b) Now let $a, b, c, m \in \mathbb{Z}$. Suppose that $a c \equiv b c(\bmod m)$ and that $\operatorname{gcd}(c, m)=1$. Using (a), prove that $a \equiv b(\bmod m)$.

