MATH 052: INTRODUCTION TO PROOFS FINAL EXAM SOLUTIONS

Problem 1. For (a), we have $\{2,3\}$. For (b), we have "If *n* is not divisible by 2 and *n* is not divisible by 5, then *n* is not divisible by 10." For (c), we have $\mathcal{P}(S) = \{\emptyset, \{-\pi\}, \{\sqrt{2}\}, \{-\pi, -\sqrt{2}\}\}$. Statement (d) is false and (e) is true.

Problem 2. For the truth table, we have:

P	Q	R	$\sim Q \Rightarrow P$	$P \vee R$	$ (\sim Q \Rightarrow P) \land (P \lor R)$
F	F	F	F	F	F
\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	Т	\mathbf{F}
\mathbf{F}	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	Т	Т	Т	Т	Т
Т	\mathbf{F}	\mathbf{F}	Т	Т	Т
Т	\mathbf{F}	Т	Т	Т	Т
Т	Т	\mathbf{F}	Т	Т	Т
Т	Т	Т	Т	Т	Т

For (b), no, it is not a tautology, because the sentential form is not identically true.

Problem 3. We are given $A \subseteq B$. So to show A = B, we show $A \supseteq B$. So let $x \in B$. Since $B \subseteq C$, we have $x \in C$. Since $C \subseteq A$, we have $x \in A$. Thus $B \subseteq A$.

Problem 4. For (a), we have $1^3 + 2^3 + 3^3 + 4^3 = 1 + 8 + 27 + 64 = 100$.

Now (b). For the base case n = 1, we have $1^3 = 1 = 1^2(1+1)^2/4$. Now the inductive step: suppose $1^3 + 2^3 + \cdots + n^3 = n^2(n+1)^2/4$. Then

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$
$$= (n+1)^{2} \frac{n^{2} + 4(n+1)}{4} = \frac{(n+1)^{2}(n+2)^{2}}{4}$$

So by the principle of mathematical induction, the statement is true for all $n \ge 1$.

Problem 5. For (a), we may take $S = \mathcal{P}(\mathbb{R})$, by Cantor's theorem.

For (b), we have the partitions

$$\begin{array}{c} \{1,2,3,4\} \\ \{1,2,3\},\{4\} \quad \{1,2,4\},\{3\} \quad \{1,3,4\},\{2\} \quad \{2,3,4\},\{1\} \\ \{1,2\},\{3,4\} \quad \{1,3\},\{2,4\} \quad \{1,4\},\{2,3\} \\ \{1,2\},\{3\},\{4\} \quad \{1,3\},\{2\},\{4\} \quad \{1,4\},\{2\},\{3\} \quad \{2,3\},\{1\},\{4\} \quad \{2,4\},\{1\},\{3\} \quad \{3,4\},\{1\},\{2\} \\ \{1\},\{2\},\{3\},\{4\} \end{array}$$

of which total 15.

For (c), all of (a),(b),(c) need to hold, but not necessarily (d). Finally, for (d), by the binomial theorem, the coefficient is $\binom{63}{60}2^3$, and optionally we can multiply out:

$$\binom{63}{60}2^3 = \frac{63 \cdot 62 \cdot 61}{3 \cdot 2}2^3 = 39711 \cdot 8 = 317688.$$

Problem 6. We show that $g \circ f$ is injective and surjective.

Let $x_1, x_2 \in A$ and suppose that $(g \circ f)(x_1) = (g \circ f)(x_2)$. Then $g(f(x_1)) = g(f(x_2))$. Since g is injective, this implies that $f(x_1) = f(x_2)$. Since f is injective, this implies $x_1 = x_2$. Thus $g \circ f$ is injective.

Date: 12 December 2011.

Now let $z \in C$. Since g is surjective, there exists $y \in B$ such that g(y) = z. Since f is surjective, there exists $x \in A$ such that f(x) = y. Thus $(g \circ f)(x) = g(f(x)) = g(y) = z$, so $g \circ f$ is surjective.

Problem 7. We show the map is injective and surjective.

Suppose that $f(x_1) = f(x_2)$. Then $9x_1^2 + 5 = 9x_2^2 + 5$, so $x_1^2 = x_2^2$. So $x_1 = \pm x_2$. But $x_1, x_2 \ge 0$, so $x_1 = x_2$. Thus f is injective.

Now let $y \in \mathbb{R}_{\geq 5}$. We find $x \in \mathbb{R}_{\geq 0}$ such that f(x) = y. Well, $9x^2 + 5 = y$ so $9x^2 = y - 5$ so $x^2 = (y - 5)/9$ and $x = \sqrt{(y - 5)/9}$. (Since $y \geq 5$, this square root exists.) Since f(x) = y, we have that f is surjective.

Problem 8. We have a * b = a + b - ab and b * a = b + a - ba = a + b - ab, so * is commutative. We have

a * (b * c) = a * (b + c - bc) = a + (b + c - bc) - a(b + c - bc) = a + b + c - ab - ac - bc + abc

and

$$(a * b) * c = (a + b - ab) * c = (a + b - ab) + c - (a + b - ab)c = a + b + c - ab - ac - bc + abc$$

so a * (b * c) = (a * b) * c and * is associative. The identity element e satisfies a * e = e * a = a for all a:

 $a \ast e = a + e - ae = a$

so e - ae = e(1 - a) = 0. Since $a \neq 1$, we conclude e = 0 is the identity. That finishes (a).

For (b), we have $x \sim x$ since $x-x = 0 \in \mathbb{Z}$, so \sim is reflexive. If $x \sim y$ so $x-y \in \mathbb{Z}$, then $y-x = -(x-y) \in \mathbb{Z}$ so $y \sim x$ and \sim is symmetric. Finally, if $x \sim y$ and $y \sim z$ then $x-y, y-z \in \mathbb{Z}$ so $x-z = (x-y) + (y-z) \in \mathbb{Z}$ so $x \sim z$, and \sim is transitive. Thus \sim is an equivalence relation.

Problem 9. We compute:

$$333 = 2 \cdot 160 + 13$$
$$160 = 12 \cdot 13 + 4$$
$$13 = 3 \cdot 4 + 1$$

So gcd(333, 160) = 1 for (a). Thus

 $1 = 13 - 3 \cdot 4 = 13 - 3(160 - 12 \cdot 13) = 37 \cdot 13 - 3 \cdot 160 = 37 \cdot (333 - 2 \cdot 160) - 3 \cdot 160 = 37 \cdot 333 - 77 \cdot 160.$ So x = 37 and y = -77.

Problem 10. For (a), suppose $a \mid bc$ and gcd(a, c) = 1. Then there exist $x, y \in \mathbb{Z}$ such that ax + cy = 1. Thus

$$b = b \cdot 1 = b(ax + cy) = (ab)x + c(by).$$

Since $c \mid ab$ we have $c \mid (ab)x$. Since also $c \mid c(by)$, we have $c \mid ((ab)x + c(by)) = b$, as desired.

To conclude with (b), suppose that $ac \equiv bc \pmod{m}$ and gcd(c,m) = 1. Then $m \mid (ac - bc) = c(a - b)$. Using (a), we conclude $m \mid (a - b)$. Thus $a \equiv b \pmod{m}$.