MATH 052: INTRODUCTION TO PROOFS FINAL EXAM SOLUTIONS

Problem 1. For (a), we have $\{2,3\}$. For (b), we have "If n is not divisible by 2 and n is not divisible by 5, then n is not divisible by 10 ." For (c), we have $\mathcal{P}(S)=\{\emptyset,\{-\pi\},\{\sqrt{2}\},\{-\pi,-\sqrt{2}\}\}$. Statement (d) is false and (e) is true.

Problem 2. For the truth table, we have:

P	Q	R	$\sim Q \Rightarrow P$	$P \vee R$	$(\sim Q \Rightarrow P) \wedge(P \vee R)$
F	F	F	F	F	F
F	F	T	F	T	F
F	T	F	T	F	F
F	T	T	T	T	T
T	F	F	T	T	T
T	F	T	T	T	T
T	T	F	T	T	T
T	T	T	T	T	T

For (b), no, it is not a tautology, because the sentential form is not identically true.
Problem 3. We are given $A \subseteq B$. So to show $A=B$, we show $A \supseteq B$. So let $x \in B$. Since $B \subseteq C$, we have $x \in C$. Since $C \subseteq A$, we have $x \in A$. Thus $B \subseteq A$.
Problem 4. For (a), we have $1^{3}+2^{3}+3^{3}+4^{3}=1+8+27+64=100$.
Now (b). For the base case $n=1$, we have $1^{3}=1=1^{2}(1+1)^{2} / 4$. Now the inductive step: suppose $1^{3}+2^{3}+\cdots+n^{3}=n^{2}(n+1)^{2} / 4$. Then

$$
\begin{aligned}
1^{3}+2^{3}+\cdots+n^{3}+(n+1)^{3} & =\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3} \\
& =(n+1)^{2} \frac{n^{2}+4(n+1)}{4}=\frac{(n+1)^{2}(n+2)^{2}}{4} .
\end{aligned}
$$

So by the principle of mathematical induction, the statement is true for all $n \geq 1$.
Problem 5. For (a), we may take $S=\mathcal{P}(\mathbb{R})$, by Cantor's theorem.
For (b), we have the partitions
$\{1,2,3,4\}$
$\{1,2,3\},\{4\} \quad\{1,2,4\},\{3\} \quad\{1,3,4\},\{2\} \quad\{2,3,4\},\{1\}$

$$
\{1,2\},\{3,4\} \quad\{1,3\},\{2,4\} \quad\{1,4\},\{2,3\}
$$

$\{1,2\},\{3\},\{4\}$

$$
\{1,3\},\{2\},\{4\} \quad\{1,4\},\{2\},\{3\} \quad\{2,3\},\{1\},\{4\} \quad\{2,4\},\{1\},\{3\}
$$

$\{1\},\{2\},\{3\},\{4\}$
of which total 15 .
For (c), all of (a),(b),(c) need to hold, but not necessarily (d). Finally, for (d), by the binomial theorem, the coefficient is $\binom{63}{60} 2^{3}$, and optionally we can multiply out:

$$
\binom{63}{60} 2^{3}=\frac{63 \cdot 62 \cdot 61}{3 \cdot 2} 2^{3}=39711 \cdot 8=317688
$$

Problem 6. We show that $g \circ f$ is injective and surjective.
Let $x_{1}, x_{2} \in A$ and suppose that $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. Then $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Since g is injective, this implies that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Since f is injective, this implies $x_{1}=x_{2}$. Thus $g \circ f$ is injective.

[^0]Now let $z \in C$. Since g is surjective, there exists $y \in B$ such that $g(y)=z$. Since f is surjective, there exists $x \in A$ such that $f(x)=y$. Thus $(g \circ f)(x)=g(f(x))=g(y)=z$, so $g \circ f$ is surjective.
Problem 7. We show the map is injective and surjective.
Suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $9 x_{1}^{2}+5=9 x_{2}^{2}+5$, so $x_{1}^{2}=x_{2}^{2}$. So $x_{1}= \pm x_{2}$. But $x_{1}, x_{2} \geq 0$, so $x_{1}=x_{2}$. Thus f is injective.

Now let $y \in \mathbb{R}_{\geq 5}$. We find $x \in \mathbb{R}_{\geq 0}$ such that $f(x)=y$. Well, $9 x^{2}+5=y$ so $9 x^{2}=y-5$ so $x^{2}=(y-5) / 9$ and $x=\sqrt{(y-5) / 9}$. (Since $y \geq 5$, this square root exists.) Since $f(x)=y$, we have that f is surjective.
Problem 8. We have $a * b=a+b-a b$ and $b * a=b+a-b a=a+b-a b$, so $*$ is commutative. We have

$$
a *(b * c)=a *(b+c-b c)=a+(b+c-b c)-a(b+c-b c)=a+b+c-a b-a c-b c+a b c
$$

and

$$
(a * b) * c=(a+b-a b) * c=(a+b-a b)+c-(a+b-a b) c=a+b+c-a b-a c-b c+a b c
$$

so $a *(b * c)=(a * b) * c$ and $*$ is associative. The identity element e satisfies $a * e=e * a=a$ for all a :

$$
a * e=a+e-a e=a
$$

so $e-a e=e(1-a)=0$. Since $a \neq 1$, we conclude $e=0$ is the identity. That finishes (a).
For (b), we have $x \sim x$ since $x-x=0 \in \mathbb{Z}$, so \sim is reflexive. If $x \sim y$ so $x-y \in \mathbb{Z}$, then $y-x=-(x-y) \in \mathbb{Z}$ so $y \sim x$ and \sim is symmetric. Finally, if $x \sim y$ and $y \sim z$ then $x-y, y-z \in \mathbb{Z}$ so $x-z=(x-y)+(y-z) \in \mathbb{Z}$ so $x \sim z$, and \sim is transitive. Thus \sim is an equivalence relation.
Problem 9. We compute:

$$
\begin{aligned}
333 & =2 \cdot 160+13 \\
160 & =12 \cdot 13+4 \\
13 & =3 \cdot 4+1
\end{aligned}
$$

So $\operatorname{gcd}(333,160)=1$ for (a). Thus

$$
1=13-3 \cdot 4=13-3(160-12 \cdot 13)=37 \cdot 13-3 \cdot 160=37 \cdot(333-2 \cdot 160)-3 \cdot 160=37 \cdot 333-77 \cdot 160 .
$$

So $x=37$ and $y=-77$.
Problem 10. For (a), suppose $a \mid b c$ and $\operatorname{gcd}(a, c)=1$. Then there exist $x, y \in \mathbb{Z}$ such that $a x+c y=1$. Thus

$$
b=b \cdot 1=b(a x+c y)=(a b) x+c(b y) .
$$

Since $c \mid a b$ we have $c \mid(a b) x$. Since also $c \mid c(b y)$, we have $c \mid((a b) x+c(b y))=b$, as desired.
To conclude with (b), suppose that $a c \equiv b c(\bmod m)$ and $\operatorname{gcd}(c, m)=1$. Then $m \mid(a c-b c)=c(a-b)$. Using (a), we conclude $m \mid(a-b)$. Thus $a \equiv b(\bmod m)$.

[^0]: Date: 12 December 2011.

